General SifDec documentation

N. I. M. Gould D. Orban Ph.L. Toint

September 16, 2004

CERFACS Technical Report TR/PA/02/14

Contents

1 Installation and usage
1.1 Installing and managing SifDec e
1.LI.1 install_sifdec v v i v i i i e e e e e e e e e e e e e
1.1.2 update_sifdec. o i i i i e e e e e e
1.1.3 uninstall_sifdec @ i i i i e e e e e
1.1.4 Rebuilding SifDec e e e
1.2 TheSifDectree i i i e e e
1.3 User-modifiable parts e
1.4 SifDECSIZES o v v e e e e e
141 SIFdecoder SIZes v v v v i i e e e e e e e e e e e e e e
1.42 Rebuilding SifDec e e e
1.5 The sifdecode command
1.6 Attempting installation on an unsupported architecture
2 Future versions of SifDec
2.1 Future features e e e
3 License

10
12
12
12
15
15
16
18
18
20

22

23

Disclaimer

This software was written as a personal project and comes with NO WARRANTY of any kind, not even
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Please read the file LICENSE in the SifDec home directory prior to any other manipulation.

The authors assume no responsibility for any use.

The authors, N. I. M. Gould, D. Orban and Ph.L. Toint

Contact

N. I. M. Gould, Computational Science and Engineering Department, Rutherford Appleton Laboratory,
Chilton, Oxfordshire OX11 0QX, England.

n.gould@rl.ac.uk

http://www.cse.clrc.ac.uk/Person/N.I.M.Gould

D. Orban, Ecole Polytechnique de Montréal
Mathematics and Industrial Engineering Department
Dominique.Orban@polymtl.ca
http://www.mgi.polymtl.ca/dominique.orban

Ph.L. Toint, Facultés Universitaires Notre-Dame de la Paix, 61, rue de Bruxelles, B-5000 Namur, Bel-
gium.

Philippe.Toint@fundp.ac.be

http://www.fundp.ac.be/ phtoint

Note

This documentation is in constant evolution, and so is the software. We advise the reader to consult the
website http://cuter.rl.ac.uk/cuter-www/sifdec for the latest information, bug fixes and patches
concerning SifDec.

mailto:n.gould@rl.ac.uk
http://www.cse.clrc.ac.uk/Person/N.I.M.Gould
mailto:Dominique.Orban@polymtl.ca
http://www.mgi.polymtl.ca/dominique.orban
mailto:Philippe.Toint@fundp.ac.be
http://www.fundp.ac.be/~phtoint
http://cuter.rl.ac.uk/cuter-www/sifdec

This document describes installation and usage of the SifDec package, and is in-
tended to be one of the main documentation sources available with the package; other
sources include man pages, various README files and self-documented scripts.
SifDec is a decoder. 1t translates test problems, written in Standard Input Format
(SIF), into well-defined Fortran 77 and data files. Once translated, these files may
be manipulated to provide tools suitable for testing optimization packages. SifDec
used to be part of, and has been extensively used with, the CUTE testing environment
[] and is now a vital component of the CUTEr testing environment, which
includes ready-to-use interfaces to existing packages, such as MINOS, SNOPT, fil-
terSQP and KNITRO, but could also serve different purposes.

SifDec is now distributed as a separate package for both convenience reasons and to
encourage consistent use in conjunction with other software and packages.

SifDec is available on a variety of UNIX platforms, including LINUX and is designed
to be accessible and easily manageable on heterogeneous networks.

“When all else fails, read the documentation.” (fortune)

Chapter 1

Installation and usage

1.1 Installing and managing SifDec

The current version of SifDec comes in the form of a gzipped tarfile. To uncompress and extract the SifDec
distribution from it, move the file to a new directory of your choice—we shall refer to this directory as
$SIFDEC—and issue the commands

prompt% gqgunzip sifdec.tar.gz
prompt% tar xvf sifdec.tar

or, more compactly,
prompt% qgunzip -c sifdec.tar.gz | tar xvf -
On GNU-based LINUX systems, this is also done by the single command

prompt% tar zxvf sifdec.tar.gz

If you want the SifDec files to be accessible to a number of users on a shared filesystem on your local
network, you might need privileged access to your machines, or to have these steps performed by your
system administrator.

The current installation is via a text-based interface, in which the user is prompted for choices pertaining
to the desired installation. The main installation script is install_sifdec and interacts with a number
of auxiliary scripts. We examine these scripts in turn, using an example of a SifDec installation on a
shared-filesystem network. The scripts provided are:

1. install_sifdec: installs a new instance of SifDec on the system,
2. update_sifdec: updates files in an installed instance of SifDec,
3. uninstall_sifdec: remove a particular instance of SifDec installation.

In addition the the three above scripts, we will also examine a manner to re-generate parts of SifDec, due
to the modification of one or more files.

These scripts can be found in

CHAPTER 1. INSTALLATION AND USAGE 6

$SIFDEC/build/scripts

Suppose, by way of example, that your local network contains the following machines (amongst others).

1. a SUN Ultra workstation running Solaris with an installed Sun Fortran 90 compiler, 90,

2. an intel-based personal computer running LINUX for which the Gnu Fortran 77 compiler, g77, is
installed, and

3. a Compaq Alpha running Tru-64 for which the Compaq Fortran 77 compiler, 77, is available.
In the remainder of this documentation, we describe the role of the aforementioned scripts based on this

example of network. Assume that you wish to install an instance of SifDec for each of these machines,
according to Table 1.1:

‘ Machine ‘ Compiler ‘ Size ‘ Precision ‘

SUN 90 large double
Intel 77 medium | single
Compaq 90 large double

Table 1.1: A possible installation of SifDec on a shared-filesystem network. Size refers to the (maximum)
dimension of the examples you wish to run, while Precision denotes the floating-point precision required.

SifDec relies on portable Makefiles, generated from architecture-independent Umakefiles'.

1.1.1 install_sifdec

This script serves the dual purposes of installing the initial instance of SifDec on your system and of
installing an additional instance, for a different architecture, where by architecture, we mean the combi-
nation machine—operating system—compiler—size—precision. Assume you wish to install all your different
instances of SifDec in the directory $SIFDEC = /usr/share/sifdec/. Unpacking the SifDec distribu-
tion in the $SIFDEC directory and launching the initial installation, say for the SUN Ultra machine, is
done by simply typing

prompt% install_sifdec

at the command prompt. However, before issuing the install command, we recommend that you check
the files system.cf in $SIFDEC/config, where ‘system’ represents your operating system, to make sure
the commands there are correctly defined for your environment, and that the temporary directory is cor-
rectly set. The current directory ‘.’ must not be used as temporary directory. Once you have issued the
install_sifdec command, you will be prompted for information regarding the instance of SifDec you
wish to install. The first question concerns your machine. In this case, select “Sun workstation™ (7).
Next, select the operating system your machine is running. Here, we select “Solaris” (1). You are then
faced with a list of available compilers for your machine (without any guarantee that these compilers are

actually installed on your machine, simply those we know are available for the machine—operating system

IUmakefiles are a much simplified variant of Imakefiles [1

CHAPTER 1. INSTALLATION AND USAGE 7

combination you have selected). We want to select “Sun f90” (8). Select next the precision of the SifDec
tools (single or double), and their size (small, medium, large or customized).

Once this information has been provided to the installation script, you are given a default directory name
where the selected instance of SifDec will be installed. This directory is a subdirectory of $SIFDEC that
you chose earlier (in this case, /usr/share/sifdec/). For the present instance, the default directory is

/usr/share/sifdec/SifDec.large.sun.sol.f90

reflecting the selections you made during the early installation phase. This directory name should be
self-explanatory and should help you and other users determine where each installed instance of SifDec
is actually stored. Notice that the precision is not reflected in the directory name. The reason is that
both single and double precision instances of SifDec may be installed for the same machine-operating
system-compiler-size combination; these will be stored in the single/ and double/ subdirectories of the
above directory. If you wish, you may redefine the directory name and give it whatever name you like—it
need not be a subdirectory of $SIFDEC. Note however that you should give the full pathname of the new
directory that you choose, e.g.

/home/mjdpowell/software/yetAnotherSifdec

even if this new directory is a subdirectory of the $SIFDEC directory:
/usr/share/sifdec/aCustomSifdec

It is probably good practice to be content with the default name or not to give it a cryptic or ambiguous
name. After checks to see if a similar distribution has already been installed and for the existence of the
specified directory, the installation itself begins.

The script install_sifdec then creates the necessary directory structure, Umakefiles and configuration
files. The final step of the installation is left to the user and is described below.

Once this phase is complete, install_sifdec reminds you of what you should add to your .cshrc,
.bashrc, or whichever UNIX configuration file corresponds to the shell you use. The directory structure
after the initial installation is as described in the CUTEr/SifDec paper provided in the SifDec distribution
and in §1.2 and Fig.1.1. In the case we are concerned with, the STFDEC environment variable should be
set to /usr/share/sifdec and MYSIFDEC to /usr/share/sifdec/SifDec.large.sun.sol.f90 (or
the alternative directory you specified during the installation phase).

The script install_sifdec also advises you to read the various README files scattered over the directory
tree under $MYSIFDEC. We now describe the final step of the installation using Umakefiles. There is a
Umakefile in each subdirectory of $MYSIFDEC. Each of these Umakefiles needs to appropriately use the
configuration files stored in $MYSIFDEC/config so as to generate Makefiles suited to your local system.
This process is usually referred to as bootstrapping. This is done by changing to $MYSIFDEC and issuing
the command

prompt% ./install_mysifdec

at the command prompt. Please note that if both single and double precision were installed, the script
install_mysifdec requires a command-line argument, telling it for which precision it should bootstrap
the Umakefiles. In an attempt to follow the main guidelines for the CPP — the C preprocessor, on which
Umakefiles are based — the argument to install mysifdec takes the form of a symbol definition. More
precisely, if the user wishes to remake the double precision version of SifDec, the command is

CHAPTER 1. INSTALLATION AND USAGE 8

prompt% ./install mysifdec -DDoublePrecision

and similarly, for the single precision version,

prompt% ./install mysifdec -DSinglePrecision

Refer to the file IMPORTANT for the latest details. Do not let make’s output confuse you. On a Linux
system, and because make is usually accompanied by the -w command-line option, using the standard g77
compiler, the output of the above command looks like

umake -I./config -DIsg77 -DLargeSize -DDoublePrecision

+ /bin/rm -f Makefile.bak

+ /bin/mv Makefile Makefile.bak

umake -I./config -DTOPDIR=. -DCURDIR=. -DIsg77 -DLargeSize -DDoublePrecision
making Makefiles in bin...

make[1l]: Entering directory ‘/home/do/Sifdec4Linux/bin’
make[l]: Nothing to be done for ‘Makefiles’.

make[1l]: Leaving directory ‘/home/do/Sifdec4Linux/bin’

making Makefiles in double...

make[1l]: Entering directory ‘/home/do/Sifdec4Linux/double’
making Makefiles in double/bin...

make[2]: Entering directory ‘/home/do/Sifdec4Linux/double/bin’
make[2]: Nothing to be done for ‘Makefiles’.

make[2]: Leaving directory ‘/home/do/Sifdecd4Linux/double/bin’
making Makefiles in double/config...

make[2]: Entering directory ‘/home/do/Sifdec4Linux/double/config’
make[2]: Nothing to be done for ‘Makefiles’.

make[2]: Leaving directory ‘/home/do/Sifdec4Linux/double/config’
make[1l]: Leaving directory ‘/home/do/Sifdec4Linux/double’

This is normal output and it indicates that everything worked out smoothly. make is simply echoing what
it attempts to do in each subdirectory. A message like “Nothing to be done for ‘Makefiles’.” simply
indicates that the subdirectory where make is currently working does not have further subdirectories. On
most systems, make is less verbose.

The above command should be able to properly generate the Makefiles in each subdirectory. These Make-
files should also only contain standard commands, as every effort has been made to avoid using exotic
Makefile features and capabilities, such as the $@@ construct. A README file accompanies every Makefile
to describe what it does and which targets it recognizes. Users are advised to take a look at these files.
You normally do not need to read Makefiles generated by umake as these are usually very long and con-
tain hundreds of parameter definitions. The documentation files and a basic knowledge of make should
be enough for you to feel comfortable with the (re)generation of the various parts of SifDec. Once the
Makefiles are generated, the only thing that remains to be done is the usual make all. However, as users
who have some experience with make know, make outputs a lot of information—it basically echoes to the
standard output every action it takes. The -s command-line option to make lowers its verbosity level and
basic information on how the build is progressing only is printed. Thus, users should build SifDec using
the command

prompt% make -s all

CHAPTER 1. INSTALLATION AND USAGE 9

This command completes the installation of SifDec, using Umakefiles. On my Linux system, the installa-
tion takes a couple of minutes and make’s output looks like

Getting UNIX commands right [Ok]
Casting script.sed [Ok]
Casting cast.sed [Ok]
Casting cast90.sed [0k]
Casting local.f [Ok]
Adding timer [Ok]
Building local.o [Ok]
making all in ./bin...
Linking slct [Ok]
Linking clst [Ok]
Casting classall [0k]
Casting classify [Ok]
Casting helpmsg [Ok]
Casting select [Ok]
Casting sifdecode [0k]
Installing show.awk [Ok]
Installing param.awk [Ok]
making all in ./double...
making all in double/bin...
Building sifdec.o [Ok]
Building decode.o [Ok]
Building gps.o [Ok]
Building inlanc.o [Ok]
Building makefn.o [Ok]
Building mafnad.o [Ok]
Building makegr.o [Ok]
Building magrad.o [Ok]
Building printp.o [Ok]
Building rest.o [Ok]
Building trans.o [Ok]
Building utils.o [Ok]
Linking sifdec [Ok]

making all in double/config...

On workstations, the installation should be expected to take longer. During this phase, keep an eye on
the screen and look for the [Ok] indicators. Should make come across some difficulty, this sequence
of indicators should be interrupted by an error message. To know more about the problem, read the
README file in the directory where the problem occured to try to indentify the target which make was
attempting to build, and re-run make on that target without the —s option.

You may then install a new instance of SifDec, which may be for a different architecture, or one corre-
sponding to an already-installed instance, with a different precision or size. In all cases, the environment
variable MYSIFDEC should point to the current, working, instance of SifDec.

CHAPTER 1. INSTALLATION AND USAGE 10

The install_sifdec script keeps track of all installed instances of SifDec on your system in the log-
file $SIFDEC/log/install.log. This file may be used, for instance, to have MYSIFDEC point to the
right distribution. For the purpose of illustrating the above, assume the three distributions given in Ta-
ble 1.1 are installed in their default directory. Besides date information, the following will be found in
$SIFDEC/log/install.log, where the exclamation mark (!) is a separator.

double large Sun-workstation sol £90 ! $SIFDEC/SifDec.large.sun.sol.f90
double medium Intel-like-PC 1nx g77 ! $SIFDEC/SifDec.medium.pc.lnx.g77
double large Compag-Alpha t64 £90 ! $SIFDEC/SifDec.large.alp.t64.£90

1.1.2 update_sifdec

As it is our intention to upgrade over time (or fix if necessary) the tools supplied in the SifDec package,
a mechanism for keeping an installed system up to date, and to install newer instances of the tools, is
required. This is the role of the update_sifdec script. If all goes well, you should not have to use
update_sifdec immediately. Announcements of bug-fixes and enhancements will be posted and indi-
cated on the website. There are two forms of the command.

In its first form, update_sifdec takes two command-line options, as follows

prompt$% update_sifdec filename

where filename is the name of the file to upgrade, possibly specified with a path. Suppose, for example,
that the file gps. f has been improved so as to perform its task faster, upgrading your current instance of
SifDec is achieved by typing

prompt% update_sifdec gps.f

at the command prompt. This command first copies the new source file to proper location, which is in this
case $SIFDEC/common/src/tools. If there are currently both single and double precision instances, you
will be asked to choose which you would like to update; if there is only one instance under SMYSIFDEC,
the precision will be chosen accordingly. The script then casts and compiles the incoming file. Of course,
corresponding actions are performed depending on the type of filename: if it is a script, it is only cast, and
stored in its proper place, and if it is a documentation file, it is simply moved to $SIFDEC/common/doc.

In its second form, update_sifdec takes three command-line options, described as follows

prompt$% update_sifdec -a filename

where filename is the name of a file describing a list of SifDec files to be upgraded. The file filename
should contain

1. on its first line, the directory where the new (upgraded) files can be found, and

2. on subsequent lines, the names of those upgraded files, possibly preceded by their destination di-
rectory. A single file per line should be given.

Note that preceding the file names by their destination directory is not compulsory; in fact, the path is
ignored and update_sifdec tries to determine the correct path for itself. As an example, suppose that the
tools gps. f, install_sifdec, compiler.cry.unc.f90 and sifdecode.pro have been upgraded, and
are temporarily stored in /home/upgrade. A corresponding input file might be

CHAPTER 1. INSTALLATION AND USAGE 11

/home /upgrade
$SIFDEC/common/src/tools/gps.f
$SIFDEC/build/scripts/install_sifdec
compiler.cry.unc.£90
sifdecode.pro

but exactly the same result would be produced by the simpler file
/home/upgrade
gps.f
install_sifdec
compiler.cry.unc.£90
sifdecode.pro

or by the deliberately confusing file

/home/upgrade

/usr/share/junk/gps.f

/home /upgrade/install_sifdec
/home/downgrade/compiler.cry.unc.f90
/opt/degrade/sifdecode.pro

As above, SifDec copies these files from /home/upgrade to their proper location, prompts for the pre-
cision required (if necessary), casts and, where necessary, compiles the incoming files, and updates the
specified instance stored under $MYSIFDEC.

The additional command-line option -m forces update_sifdec to simply move the files to their proper
location and to skip compilation. Help may be obtained from update_sifdec through either of the -h,
-help or —-help flags.

To summarize, the complete synopsis of update_sifdec is as follows

update_sifdec [-h | -help | --help] [-m] [-a listFile | newFile]

In the situation where SifDec has been unpacked but no further installation steps were performed, or all
current instances were deleted, update_sifdec still can move the updated source files to their proper
location, skipping the compilation phase. The same syntax as above can be used.

Caution: attention should be paid to the fact that update_sifdec works by source-ing the UNIX com-
mands from the file $SMYSIFDEC/precision/config/cmds (where precision is the required precision) and
that these commands define the temporary directory used during compilation phase. In most cases, this
temporary directory is simply /tmp. This temporary directory must not be the same as that specified in
the first line of update_sifdec’s input file (/home/upgrade in the examples above). When no compi-
lation occurs and update_sifdec simply moves the files to their proper location, it will source the file
$SIFDEC/build/arch/system.all, a symbolic link to one of the other system. * files, rather than the
command file, as the location of this will not yet have been assigned. The user might reset this link to
better suit their system, or create a suitable system.all file of their own, better able to give the correct
commands in all, or most, cases.

Please remark that it should be safer to update files using the -m command-line option to update sifdec,
and then to issue a make all (or make -s all) from $MYSIFDEC (or from the home directory of the
SifDec instance which should be rebuilt).

CHAPTER 1. INSTALLATION AND USAGE 12

1.1.3 uninstall_sifdec

The script uninstall_sifdec is used to remove a previously installed instance of SifDec from your
system. If called with no argument, the user is asked to choose which distribution to remove, from a
list of all the instances found on the system. Otherwise, the only argument is the name of the directory
containing the distribution to be removed. We illustrate the second case. Referring again to Table 1.1,
assume we wish to remove the Compaq-Alpha distribution. This is done by issuing the command

prompt$% uninstall_sifdec $SIFDEC/SifDec.large.alp.t64.£90

at the command prompt. If this directory contains both the single and double precision instances, you
will be prompted for which should be removed. There is no possibility, at the moment, to remove both
instances at once. If single or double precision instance only is present, the whole directory will be deleted
as will the corresponding entry in $SIFDEC/log/install.log. Note that un-installing should be done
from the same machine from which the installation command was issued, as the corresponding directory
might not be recognized on other machines. Issuing the command

prompt% uninstall_sifdec --help

will display a short help message. The script is itself self-documented and the user may consult it for
more information.

1.1.4 Rebuilding SifDec

A rebuild of SifDec may turn out to be necessary whenever SifDec informs the user that the workspace
dimensions need to be increased—a rebuild may also turn out to be necessary whenever prototype files are
modified, or in general, whenever any basic file is modified. SifDec itself usually issues warning messages
whenever the workspace is insufficient, urging the user to increase a particular (set of) parameters. These
parameters may be tuned in sifdec.siz, which can be found in

$MYSIFDEC/precision/config

where precision is either ‘single’ or ‘double’, according to your installation. For the change to take effect,
SifDec needs to be cast and compiled again. Assume the Solaris installation is modified.

All the user needs to do to make sure he or she rebuilds everything that needs to be rebuilt is change to
the directory SMYSIFDEC and issue a

prompt% make -s all

make then takes care of everything and rebuilds whichever targets depend on the updated files.

1.2 The SifDec tree

One of the defects of CUTE is that it was not designed to simultaneously support a multi-platform envi-
ronment, that is instances of the environment that could be used simultaneously from a central server on
several (possibly different) machines at the same time. Moreover, using CUTE on a single machine in
conjunction with several different compilers (a case that frequently occurs when testing new software) is
impossible. Furthermore, handling different instances of the environment corresponding to different sizes
of the tools (that is the size of the test problems that they can handle) is also impossible. The reason for

CHAPTER 1. INSTALLATION AND USAGE 13

these difficulties is that the structure of the CUTE files, as described in [], does not lend itself to
such use, since it only contains a single subtree of objects files. If we call the combination of a machine,
operating system, compiler and size of the tools an architecture, the obvious solution is then to allow
several such subtrees in the installation, one for each architecture used.

However, as soon as the possibility of using architecture dependent subtrees is raised, the proper identi-
fication of the parts (scripts, programs) of the environment that are independent of the architecture also
become an issue. Since it would be inefficient to store copies of these independent scripts and programs
in each subtree, it is natural to store them in a data structure which is itself disjoint from the dependent
subtrees. Finally, the multiplication of subtrees containing sometimes very similar but yet vitally different
data makes the maintenance of the environment substantially more complicated, and therefore requires
enhanced tools and a clear distinction between the parts of the environment that are related to decoding
SIF-encoded files and those related to its own maintenance.

The directory organization chosen for SifDec, shown in Figure 1.1, reflects these preoccupations. We now
briefly described its components.

Starting from the top of the figure, the first subtree under the main $SIFDEC directory (the main root of
the SifDec environment) is build, which essentially contains all the files necessary for installation and
maintenance. Its arch subdirectory contains the files defining all possible architectures that are supported
by SifDec, allowing the user to install new architecture dependent subtrees in an evolving manner, de-
pending on the testing needs, the evolution of the platforms, systems and compilers. The prototypes
subdirectory contains the parts of the environment which have to be specialized to one architecture before
it can be used. We call such files prototypes and the process of specializing them to a specific architecture
casting. The prototype files include a number of tools and scripts whose final form typically depends on
compiler options and the chosen size of the tools. Finally, the last subdirectory of build, named scripts,
contains the environment maintenance tools as well as a number of documentation files.

The second subdirectory under $SIFDEC is called config and contains all the configuration and rules files
which are relevant to umake when the latter is used to bootstrap the various Imakfiles in order to create
the necessary Makefiles.

The third subtree under $SIFDEC is called common and contains the environment data files that are relevant
for its purpose, but that are independent of the architecture. Its first subdirectory, doc, contains a number
of documentation files concerning the environment (such as a description of its structure, the description
of procedure to follow to fully exploit the possibilites of the SIF decoder, the complete SIF reference
document, ...), but not a description of the SifDec tools and scripts themselves. These are documented in
the man subdirectory (and, as is common on Unix systems, its manl subdirectory). The src subdirectory
contains two subdirectories that contain the source files for the environment utilities: select contains the
source of the classification and selection tools and sifdec contains the source of the SIF decoder.

The log subdirectory of $SIFDEC contains a log of the various installations (and, possibly, subsequent
un-installations) of the environment for the various architectures.

The remaining subdirectories of $SIFDEC are all architecture dependent: each of them corresponds to the
installation of SifDec on a specific machine, for a given operating system and compiler and for a given size.
The figure only represents one, but the continuation dots at the bottom of the leftmost vertical line indicate
that there might be more than one. The name of these directories are (by default) automatically chosen at
installation, but a user of one of these subtrees would typically give it a symbolic name, like SMYSIFDEC,
to refer to the instance of SifDec currently in use. Each architecture-dependent subtree is divided into
its single and double precision instances (single and double, respectively), each of these containing

CHAPTER 1. INSTALLATION AND USAGE

S$SIFDEC

arch ‘
build prototypes ‘
scripts ‘
config ‘
{ man %—{ manl
select
common }—{ src
sifdec
{ doc ‘
log ‘
bin
—{ single
config
SMYSIFDEC for
e machine
® Op. system ——{ bin ‘
e compiler
e size
bin
H double
config

Figure 1.1: Structure of the SifDec directories

14

CHAPTER 1. INSTALLATION AND USAGE 15

in turn two subdirectories. The first, bin, contains the SIF decoder executable in the corresponding
precision. The second, config, contains the architecture dependent files that were used to build the current
SMYSIFDEC subtree (they are reused when a tool or optimization package is added or updated). Finally,
SMYSIFDEC/bin contains those scripts which are architecture-dependent, but not precision-dependent.

A final new feature of the environment organization is that the documentation is available via the usual
man command for the scripts and tools, and both in acsii and pdf formats for the rest. It is hoped that this
will make access to the relevant information more convenient for users.

1.3 User-modifiable parts

The SIF decoder depends on user-modifiable variables, which are not directly included in the Fortran
source code, but cast prior to compilation. The file containing the user-modifiable data is sifdec.siz. Af-
ter the initial installation, this file will be in the SifDec directory $MYSIFDEC/ [single|double]/config.
If modified, the SifDec distribution may be rebuilt using the new parameter values using make.

Some Fortran source files, like c1sf.f and slct.f, have hardcoded user-modifiable parts. These are
usually located at the top of the file, between banners, such as
C——— THE FOLLOWING SPECIFICATIONS MAY BE MODIFIED BY THE USER --———-————-

and

1.4 SifDec sizes

The SifDec package is distributed with three default “sizes”: large, medium, and small. In addition, there
is a custom size, which, as the term indicates, may be suitable for situations demanding a specialized
configuration. These sizes refer to the size of the memory available for problem decoding and solution,
and hence are directly related to the size (the amount of data) of the problems that SifDec can tackle. It
may happen that the predetermined sizes do not fit your favorite problem or your machine, and that you
wish to specify your own. Typically, when running too large a problem, SifDec will complain that one of
the size parameters is too small and stop. You then have to increase this parameter (if this is possible on
your machine) in order to handle the problem. This modification of the SifDec array sizes is explained
below.

The actual choice of one of the predetermined sizes is made when running the install _sifdec command,
which prompts the user for the desired size. In fact, install_sifdec, or the Makefiles, depending on
which SifDec you are using, cast the source code against a “size mask” corresponding to the selected size,
and thereby determines the dimensions of the various arrays used in the code. The assignment statements
are differentiated by their first four characters:

CBIG | specifies the large size
CMED | the medium size

CTOY | the small size

CCUS | the custom size

CHAPTER 1. INSTALLATION AND USAGE 16

Note that the custom size is first thought of as larger than the large size, but nothing prevents the user from
building an intermediary size or a smaller size than the toy size.

Changing the size of the SifDec distribution in the sense just described may call for a partial re-installation.
If most (or all) parameters must be, say, increased, it might be worth considering simply re-installing
SifDec using a larger size (e.g. large if medium turns out to be insufficient for your purposes). To that
end, execute install_sifdec again and select the correct size. In case very few parameters need to be
changed, the procedure described below might be considered. We now examine this procedure in more
detail.

1.4.1 SIF decoder sizes

The SIF decoder sizes are gathered in the file SMYSIFDEC/precision/config/sifdec.siz, which con-
tains the following parameters.

Parameter ‘ Brief description

NMAX the maximum number of variables in a problem

NGMAX the maximum number of groups in a problem

NGRMAX the maximum number of different group types

NGPVMX the maximum number of real parameters associated with groups

NELMAX the maximum number of nonlinear element functions in a problem

NLMAX the maximum number of different nonlinear element types

NEVMAX the maximum total number of elemental variables in a problem

NINMAX the maximum total number of internal variables in a problem

NSETVC the maximum number of nonzero entries in an element Hessian

NEPVMX the maximum number of real parameters associated with nonlinear elements

LA the maximum number of nonzero entries in the linear elements

NINDEX the maximum number of integer parameters in a problem

NRLNDX the maximum number of real parameters in a problem

NBMAX the maximum number of different sets of bounds on the variables
which may be specified

NSMAX the maximum number of different sets of starting points which may
be specified

NOBMAX the maximum number of different sets of bounds on the objective
function which may be specified

Definitions of the terms used here are given in []. These parameters are assigned a value upon
initial installation of SifDec on the system. These values should be changed according to the SIF-decoder
messages issued at decode-time, and SifDec should be rebuilt.

Changing compiler flags

In some circumstances, it might be useful to alter the predefined compiler flags. An example might be
when some new level of code optimization becomes available on your machine. Note that care should
be exercised with code optimizers: we know of cases where the optimizers introduce real bugs into the
code. As a consequence, it might be a good idea to turn optimization off before deciding that some

CHAPTER 1. INSTALLATION AND USAGE 17

strange behaviour of the package is anomalous and worth reporting. This is another reason why modifying
compiler flags might be useful. Some operating system revisions might also require that you change
machine dependent constants or procedures (such as the timer).

If compiler flags should be changed prior to a rebuild, the user should do so by altering the COMPILE and
LOAD variables in the file $MYSIFDEC/precision/config/cmds.

If compiler flags should be changed to affect all subsequent installations of SifDec, the file <your _system>.cf
should be modified accordingly, where the compiler in question is descibed. For instance, if the compiler

in question is only found on SUN machines, the file sun.cf should be modified. If it may be found on
any machine, the file all.cf should be modified. These files are found under $MYSIFDEC/config.

System dependent constants and functions

All the system dependent constants and functions are specified in the configuration files all.cf and/or
<your_system>.cf, found under $MYSIFDEC/config, and also in the Fortran file $MYSIFDEC/precision/config/local.f
after the initial installation. If these need to be changed, this latter file is the one on which to operate before

rebuilding SifDec. Keep in mind that altering some or all these files will affect all subsequent installations

of SifDec.

A set of hashing routines

The routines HASHA, HASHB, HASHC and HASHE provide a Fortran hashing tool. They are system dependent
in that they rely on the number of bytes used to represent an integer within the particular Fortran dialect
used. This number of bytes is set in the parameter NBYTES in the configuration files all.cf and/or
<your_system>.cf, found under SMYSIFDEC/config. If your Fortran compiler uses an “unorthodox”
number of bytes for its integers, you will have to change the value of NBYTES.

A definition of the arithmetic constants

The supplied functions SMACHR and DMACHR return values for various machine dependent constants, for
single and double precision arithmetic, respectively. These machine constants are denoted Rz in single
precision and Dn in double precision. We recapitulate them in the following table

| Parameter | Brief description ‘

R1, D1 the smallest positive number €; such that 1 +¢&; > 1
R2, D2 the smallest positive number €, such that 1 —¢&, < 1
R3, D3 the smallest nonzero positive number

R4, D4 the smallest full precision positive number;

R5, D5 the largest finite positive number

Each of these numbers should be modified, in all.cf and/or <your _system>.cf, found under $MYSIFDEC/config.

CHAPTER 1. INSTALLATION AND USAGE 18

A CPU timer

This is a real function CPUTIM, that returns the current CPU-time used by the package, expressed in
seconds. This timer is, unfortunately, highly system dependent. The specific code for CPUTIM is originally
located in $SIFDEC/build/arch/compiler.*.*.* and concatenated with local.f at cast time, during
installation.

1.4.2 Rebuilding SifDec

Rebuilding SifDec is done as described in §1.1.4. Simply change to $MYSIFDEC and issue amake -s all
to make sure that everything that needs to be rebuilt is rebuilt.

1.5 The sifdecode command

It may be useful in some cases to decode a SIF-encoded problem without running an optimization package
afterwards, or to simply check the syntax of the SIF file. Either in this respect, or as part of a bigger
project—for instance, SifDec—the sifdecode command is invoked whenever it comes to decoding a SIF
file. The sifdecode command recognizes a number of command-line options, many of which only make
sense when sifdecode is used in conjunction with an optimization package. For more information on

how to use SifDec in conjunction with CUTEr, refer to the manual []. The options are described
below.
sifdecode [-s] [-h] [-k] [-o j] [-1 secs] [-f] [-b] [-a j] [-show]
[-param name=value[,name=value...]] [-force] [-debug] probname[.SIF]
where

-s use the single-precision SIF decoder, if installed. This is useful to subsequently solve the problem in
single precision, using some optimization package;

-h (or [-help]) prints a help message;
-k keep the load module after use; this is only useful in conjunction with some optimization package;

-r discourage recompilation of the test problem; this is only useful in conjunction with some optimization
package;

-0 j verbosity level: -0 0O is silent mode and -o 1 is verbose mode. The default is -o 0;

-1 secs limits the CPU running time to secs seconds; this is only useful in conjunction with some opti-
mization package;

-f generate the relevant subroutines for automatic differentiation in forward mode;
-b generate the relevant subroutines for automatic differentiation in backward mode;

-a j when used in conjunction with -f or -b, -a 1 uses the older HSL automatic differentiation package
ADO1, which -a 2 uses the newer, threadsafe, automatic differentiation package AD02;

-show displays possible parameter settings for probname[.SIF]. Other options are ignored;

CHAPTER 1. INSTALLATION AND USAGE 19

-param casts probname[.SIF] against explicit parameter settings;

-debug links the libraries and compile with -g option so as to allow debugging; this is only useful in
conjunction with some optimization package;

-n use the load module if it exists. The default is to recompile; this is only useful in conjunction with
some optimization package.

If probname. SIF is correct, this results in the creation of the files

ELFUN.f, GROUP.f, RANGE.f, OUTSDIF.d, AUTOMAT.d

containing the decoded problem data. Possibly, a file called EXTER. £ may also be created, if probname . SIF
relies on external Fortran subroutines.

One of the less convenient features of SIF-encoded problems was that the decoding procedures in CUTE
[] were not designed to recognise, nor to alter, instance-dependent variable parameters such as
problem dimensions or critical coefficients. Many real models, particularly those that arise from some
form of discretization, depend upon parameters that a user might wish to refine. With CUTE, a user
wishing to change such a parameter was forced to edit the SIF file—these files were usually provided
with a number of suggested values, all but one of which were “commented out”. Since a number of users
found this to be very inconvenient, SifDec makes provisions both for the definition and for the altering of
variable parameters from the problem-decoding scripts.

Any real or integer parameter definition containing the comment $-PARAMETER in field 5 (i.e., in columns
40-50) in a SIF file defines that parameter to be a variable parameter—this is consistent with old-style
SIF-encoded problems since strings starting with $ in this field were previously treated as comments. Any
characters after $S-PARAMETER will be regarded as comments, and will be passed back to a user on request.
All SIF files in the CUTE collection that previously contained variable parameters have been updated to
take advantage of this new SifDec facility, but of course they are still consistent with CUTE.

Given this extra syntax, the SIF decoding scripts have been extended to support two new options, allowing
users to select variable parameters in the SIF file. The first of these options, —show, prints all the variable
parameters present in the SIF file, along with suggested values to which they may be set as well as any
other provided comments. For instance, the command

prompt% sifdecode -show LUBRIFC

produces, on my system, the output

NN=10 (IE) comment : = 151 original value
NN=50 (IE) comment: n = 751
NN=500 (IE) -default value- comment: n = 7501

indicating that the only parameter accepted by the problem described in LUBRIFC. SIF is called NN, that is
takes integer values (IE), that it accepts the values 10, 50 or 500, 500 being the value used by default, and
that these values correspond, in the problem, to the variable n being equal to 151, 751 or 7501 respectively.
We now examine how to select one of the possible values for each such parameter.

The -param command-line option to sifdecode allows users to choose, from the command line, which
values to assign to these parameters. For instance, assuming that N and THETA have been marked as
variables parameters of SAMPLE. SIF and that N=400 and THETA=3.5 are valid values, the command

CHAPTER 1. INSTALLATION AND USAGE 20

prompt% sifdecode -param N=400, THETA=3.5 SAMPLE.SIF

will decode SAMPLE. SIF into the appropriate subroutines and data files, setting N to 400 and THETA to 3.5.
Note that the above command and

prompt% sifdecode -param N=400 -param THETA=3.5 SAMPLE.SIF

are perfectly equivalent.

These new features allow users to systematically solve a set of problems in all prescribed, or possible,
sizes. Default values are given in each SIF file, and we have taken the opportunity to raise these defaults
to reflect the size of problem that we feel ought to be of current interest, given that many of the previous
defaults were assigned over ten years ago.

As a possible extension of the -param command-line option, users may force a problem to be de-
coded/solved using parameter values which have not necessarily been pre-assigned in the SIF file. This is
done using the -force option, as in

prompt% sifdecode -param N=1000, THETA=3.5 -force SAMPLE.SIF

where SAMPLE.SIF does not contain the parameter setting N=1000. Omitting the -force option would
result in an abort of the process while specifying it results in the SIF decoder and the optimizer attempting
to complete the solve using the value 1000 for N. Note that nothing guarantees that this value is valid in
that context, and that the -force command-line option should be used carefully.

The options -param and -force are of course available on every sdpak interface and has the effect
described above. With consistency concerns in mind, the -show option is also available from every sdpak,
but has the sole effect of printing out the possible parameter settings, cancelling the subsequent call to the
package pak.

1.6 Attempting installation on an unsupported architecture

As far as UNIX-like platforms are concerned, it should not be too difficult to port SifDec. This might
require, however, a number of changes in several files. We suggest in this section where some of these
modifications could take place. Additional modifications may be necessary, depending on your local
system.

First, the installation scripts themselves may need to be altered, for compatibility reasons: the local C shell,
if there is one, may be different, or require different command-line options. For example, the very first
line of install_sifdec may be #!/bin/csh under Solaris, but has to be #!/bin/csh -f on LINUX
machines. All the scripts included in the SifDec distribution are thoroughly self-documented and should
be rather quickly understood by anyone familiar with the UNIX environment and the C shell. Similarly,
as all the SifDec scripts use the C shell, they may all need corresponding modifications.

Depending on your local architecture, you may have to create a new machine. cf file and alter install sifdec
correspondingly. The custom size may itself be viewed to help design a new installation, as it may easily

suit your local hardware. The file where custom size may be tuned is size.custom and may be found in
$SIFDEC/build/arch.

Make sure that the last part of the file name

compiler.machine. os.compiler,

CHAPTER 1. INSTALLATION AND USAGE 21

i.e. , the compiler part, is identical to the symbol representing this compiler in the Umake configuration
files. Also make sure that new compilers that you define there appear in

SCUTER/build/arch/f.arch or SCUTER/build/arch/c.arch

for Fortran and CC++ compilers respectively, with matching symbols. More specifically, if you compiler
name is abc, then the symbol which represents it in the configuration file must be “Isabc” and the block
defining your compiler must look like

#ifdef Isabc

#define CompilerTagld abc
tdefine umakeCompilerFlag -DIsabc
#define CompileCmd abc -c
#define LoadCmd abc
#define CompilerIsF9095 yes
#define Compile9095Cmd abc90 -c
#define Load9095Cmd abc90
tdefine FortranFlags -0
#define NumberOfBytes 8

fendif

If your system does not support man pages, these will be provided in pdf and other formats on the
SifDec website, as will updates to this general documentation and other information.

Fortran 77 files should be standard and compatible for the most part. Check your local compiler docu-
mentation for possible incompatibilities. If there is no available Fortran 90 compiler on your platform,
you will not be able to use those tools (unless you write one).

If your new installation procedure is a success, we will be pleased to include it in the next releases of
SifDec, with proper credits. In this case, please send detailed information on your changes and on your
local system. On the other hand, please feel free to contact us if you think we may be of some help.

Many thanks and again, good luck!

http://cuter.rl.ac.uk/cuter-www/sifdec

Chapter 2

Future versions of SifDec

2.1 Future features

e GUI,

e Have all the memory allocated in one place at the beginning. This would require further versions
(like CUTESt) to be written in Fortran95, Fortran2000, or similar,

SIF to AMPL converter,

AMPL to SIF converter (maybe not),

o GAMS to SIF converter (even less likely),

Support for Windows (double aaargh).

22

Chapter 3

License

Copyright (C) the Council for the Central Laboratory of the Research Councils, CERFACS and Facultes
Universitaires Notre-Dame de la Paix (CCLRC, CERFACS and FUNDP) 2001.

SOFTWARE LICENSE AGREEMENT NOTICE - THIS SOFTWARE IS BEING PROVIDED TO YOU
BY CERFACS UNDER THE FOLLOWING LICENSE. BY DOWN-LOADING, INSTALLING AND/OR
USING THE SOFTWARE YOU AGREE THAT YOU HAVE READ, UNDERSTOOD AND WILL
COMPLY WITH THESE FOLLOWING TERMS AND CONDITIONS.

1. This software program provided in source code format (the ”Source Code”) and any associated
documentation (the "Documentation”) are licensed, not sold, to you.

2. CCLRC, CERFACS and FUNDP grant you a personal, non-exclusive, non-transferable and royalty-
free right to use, copy or modify the Source Code and Documentation, provided that you agree
to comply with the terms and restrictions of this agreement. You may modify the Source Code
and Documentation to make source code derivative works, object code derivative works and/or
documentation derivative works (called ”Derivative Works”). The Source Code, Documentation
and Derivative Works (called “Licensed Software”) may be used by you for personal and non-
commercial use only. “non-commercial use” means uses that are not or will not result in the sale,
lease or rental of the Licensed Software and/or the use of the Licensed Software in any commercial
product or service. CCLRC, CERFACS and FUNDP reserve all rights not expressly granted to you.
No other licenses are granted or implied.

3. The Source Code and Documentation are and will remain the sole property of CCLRC, CERFACS
and FUNDP. The Source Code and Documentation are copyrighted works. You agree to treat any
modification or derivative work of the Licensed Software as if it were part of the Licensed Software
itself. In return for this license, you grant CCLRC, CERFACS and FUNDP a non-exclusive per-
petual paid-up royalty-free license to make, sell, have made, copy, distribute and make derivative
works of any modification or derivative work you make of the Licensed Software.

4. The licensee shall acknowledge the contribution of the Source Code in any publication of material
dependent upon the use of the Source Code. The licensee shall use reasonable endeavours to send
to CCLRC, CERFACS and FUNDP a copy of each such publication.

For CCLRC, contact n.gould@rl.ac.uk, for CERFACS, contact orban@cerfacs.fr and for FUNDP,
contact Philippe.Toint@fundp.ac.be.

23

CHAPTER 3. LICENSE 24

5. CCLRC, CERFACS and FUNDP have no obligation to support the Licensed Software it is providing
under this license.

THE LICENSED SOFTWARE IS PROVIDED ”AS IS” AND CCLRC, CERFACS and FUNDP
MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, CERFACS MAKE NO REPRESENTATIONS OR WAR-
RANTIES OF MERCHANTIBILY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT
THE USE OF THE LICENSED SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE
ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. CCLRC,
CERFACS, FUNDP AND THE AUTHORS OF THE LICENSED SOFTWARE WILL NOT BE
LIABLE FOR ANY CONSEQUENTIAL, INCIDENTAL, OR SPECIAL DAMAGES, OR ANY
OTHER RELIEF, OR FOR ANY CLAIM BY ANY THIRD PARTY, ARISING FROM YOUR
USE OF THE LICENSED SOFTWARE.

6. This license is effective until terminated. You may terminate this license at any time by destroying
the Licensed Software.

Appendix

Environment variables

The environment variables described in Table 3.1 are vital to SifDec. Refer to your local documentation
or system administrator for more information on how to set these environment variables.

‘ Name Purpose ‘

SIFDEC | Location of the source of the SifDec package;
MYSIFDEC | Location of the local instance of SifDec;
MASTSIF | Location of the local collection of SIF problems;

Table 3.1: Environment variables vital to SifDec.

25

Bibliography

[BCGTI5] 1. Bongartz, A.R. Conn, N.ILM. Gould, and Ph.L. Toint. CUTE: Constrained and Uncon-
strained Testing Environment. ACM Transactions on Mathematical Software, 21(1):123-160,
1995.

[CGT92] A.R. Conn, N.ILM. Gould, and Ph.L. Toint. LANCELQT, A Fortran Package for Large-Scale
Nonlinear Optimization (Release A). Number 17 in Springer Series in Computational Math-
ematics. Springer-Verlag, 1992.

[Dub83] P. Dubois. Software portability with imake. O’Reilly & Associates, Inc., 1983.

[GOTO1] N.I.M. Gould, D. Orban, and Ph.L. Toint. General CUTEr documentation. Rutherford Ap-
pleton Laboratory, UK, CERFACS, France and Facultés Universitaires Notre-Dame de la Paix,
Belgium, 2001. see http://cuter.rl.ac.uk/cuter-www.

26

	Installation and usage
	Installing and managing SifDec
	install_sifdec
	update_sifdec
	uninstall_sifdec
	Rebuilding SifDec

	The SifDec tree
	User-modifiable parts
	SifDec sizes
	SIF decoder sizes
	Rebuilding SifDec

	The sifdecode command
	Attempting installation on an unsupported architecture

	Future versions of SifDec
	Future features

	License

