
General CUTEr documentation

N. I. M. Gould D. Orban Ph.L. Toint

March 24, 2005

CERFACS Technical Report TR/PA/02/13

Contents

1 Installation and usage 6
1.1 Installing and managing CUTEr . 6

1.1.1 install cuter . 7
1.1.2 update cuter . 11
1.1.3 uninstall cuter . 12
1.1.4 Rebuilding CUTEr . 13

1.2 The CUTEr tree . 13
1.3 Interfacing CUTEr and Matlab(R) . 16

1.3.1 MEX-Files basics . 16
1.3.2 CUTEr and MEX-Files . 16
1.3.3 Using CUTEr from within Matlab . 17
1.3.4 Adding a new tool . 18

1.4 User-modifiable parts . 18
1.5 CUTEr tools . 19
1.6 CUTEr sizes . 19

1.6.1 tools sizes . 20
1.6.2 Sizes for the MATLAB interface tools . 21
1.6.3 Rebuilding CUTEr . 22

1.7 Driver programs . 22
1.8 The SIF decoder . 23

1.8.1 Where is the SIF decoder? . 23
1.8.2 SIF decoder sizes . 23
1.8.3 CUTEr and automatic differentiation . 23

1.9 Interfaces . 24
1.10 Creating a new interface for an optimization package 25

1.10.1 General procedure for Fortran and C interfaces 25
1.10.2 Interfacing packages written in C: cuter.h . 26

1.11 Checking the integrity of a SIF file . 28
1.12 Attempting installation on an unsupported architecture 29

2 CUTE log 34
2.1 CUTE 1.0 . 34

2.1.1 Updates since March 93 . 34
2.1.2 Bug fixes since November 93 . 36

2.2 CUTE version 2.0 . 40
2.2.1 Updates since January 1995 . 40

2

CONTENTS 3

2.2.2 Bug fixes since January 1995 . 40
2.3 CUTE version 2.99999 . 41

2.3.1 Major additions . 41

3 Future versions of CUTEr 42
3.1 Future features . 42

4 License 43

Disclaimer

This software was written as a personal project and comes with NO WARRANTY of any kind, not even
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Please read the file LICENSE in the CUTEr home directory prior to any other manipulation.

The authors assume no responsibility for any use.

The authors, N. I. M. Gould, D. Orban and Ph.L. Toint

Contact

N. I. M. Gould, Computational Science and Engineering Department, Rutherford Appleton Laboratory,
Chilton, Oxfordshire OX11 0QX, England.
n.gould@rl.ac.uk
http://www.cse.clrc.ac.uk/Person/N.I.M.Gould

D. Orban, CERFACS, Parallel Algorithms Project, Toulouse, France.
Dominique.Orban@cerfacs.fr
http://www.cerfacs.fr/˜orban

Ph.L. Toint, Facultés Universitaires Notre-Dame de la Paix, 61, rue de Bruxelles, B-5000 Namur, Bel-
gium.
Philippe.Toint@fundp.ac.be
http://www.fundp.ac.be/˜phtoint

Note

This documentation is in constant evolution, and so is the software. We advise the reader to consult the
website http://cuter.rl.ac.uk/cuter-www for the latest information, bug fixes and patches concern-
ing CUTEr.

mailto:n.gould@rl.ac.uk
http://www.cse.clrc.ac.uk/Person/N.I.M.Gould
mailto:Dominique.Orban@cerfacs.fr
http://www.cerfacs.fr/~orban
mailto:Philippe.Toint@fundp.ac.be
http://www.fundp.ac.be/~phtoint
http://cuter.rl.ac.uk/cuter-www

CUTEr is a versatile testing environment for optimization and linear algebra solvers.
The package contains a collection of test problems, along with Fortran 77, Fortran 90
and Matlab tools intended to help developers design, compare and improve new and
existing solvers. This document describes installation and basic usage of the CUTEr
environment, and is intended to be one of the main documentation sources available
with the package; other sources include man pages, various README files and self-
documented scripts.
The test problems provided are written in so-called Standard Input Format (SIF), and
a decoder is provided to convert from this format into well-defined Fortran 77 and
data files. Once translated, these files may be manipulated to provide tools suitable
for testing optimization packages. Ready-to-use interfaces to existing packages, such
as MINOS, SNOPT, filterSQP and KNITRO, are provided.
CUTEr is available on a variety of UNIX platforms, including LINUX and is designed
to be accessible and easily manageable on heterogeneous networks.

“When all else fails, read the documentation.” (fortune)

Chapter 1

Installation and usage

1.1 Installing and managing CUTEr

The current version of CUTEr comes in the form of a gzipped tarfile. To uncompress and extract the CUTEr
distribution from it, move the file to a new directory of your choice—we shall refer to this directory as
$CUTER—and issue the commands

prompt% gunzip cuter.tar.gz
prompt% tar xvf cuter.tar

or, more compactly,

prompt% gunzip -c cuter.tar.gz | tar xvf -

On GNU-based LINUX systems, this is also done by the single command

prompt% tar zxvf cuter.tar.gz

If you want the CUTEr files to be accessible to a number of users on a shared filesystem on your local
network, you might need privileged access to your machines, or to have these steps performed by your
system administrator.

The current installation is via a text-based interface, in which the user is prompted for choices pertaining
to the desired installation. The main installation script is install cuter and interacts with a number
of auxiliary scripts. We examine these scripts in turn, using an example of a CUTEr installation on a
shared-filesystem network. The scripts provided are:

1. install cuter: installs a new instance of CUTEr on the system,

2. update cuter: updates files in an installed instance of CUTEr,

3. uninstall cuter: remove a particular instance of CUTEr installation.

In addition the the three above scripts, we will also examine a manner to re-generate parts of CUTEr, due
to the modification of one or more files.

These scripts can be found in

6

CHAPTER 1. INSTALLATION AND USAGE 7

$CUTER/build/scripts

Suppose, by way of example, that your local network contains the following machines (amongst others).

1. a SUN Ultra workstation running Solaris with an installed Sun Fortran 90 compiler, f90,

2. an intel-based personal computer running LINUX for which the Gnu Fortran 77 compiler, g77, is
installed, and

3. a Compaq Alpha running Tru-64 for which the Compaq Fortran 77 compiler, f77, is available.

In the remainder of this documentation, we describe the role of the aforementioned scripts based on this
example of network. Assume that you wish to install an instance of CUTEr for each of these machines,
according to Table 1.1:

Machine Compiler Size Precision

SUN f90 large double
Intel g77 medium single

Compaq f90 large double

Table 1.1: A possible installation of CUTEr on a shared-filesystem network. Size refers to the (maximum)
dimension of the examples you wish to run, while Precision denotes the floating-point precision required.

1.1.1 install cuter

This script serves the dual purposes of installing the initial instance of CUTEr on your system and of
installing an additional instance, for a different architecture, where by architecture, we mean the combi-
nation machine–operating system–compiler–size–precision.

Assume, for the purpose of an illustration, that you wish to install all your different instances of CUTEr in
the directory $CUTER = /usr/share/cuter/. Unpacking the CUTEr distribution in the $CUTER directory
and launching the initial installation, say for the SUN Ultra machine, is done by simply typing

prompt% install cuter

at the command prompt. However, before issuing the install command, we recommend that you check the
files system.cf, where ‘system’ represents your operating system, to make sure the commands there are
correctly defined for your environment, and that the temporary directory is correctly set. The current di-
rectory ‘.’ must not be used as temporary directory. Once you have issued the install cuter command,
you will be prompted for information regarding the instance of CUTEr you wish to install. The first ques-
tion concerns your machine. In this case, select “Sun workstation” (7). Next, select the operating system
your machine is running. Here, we select “Solaris” (1). You are then faced with a list of available Fortran
compilers for your machine (without any guarantee that these compilers are actually installed on your
machine, simply those we know are available for the machine–operating system combination you have
selected)—we want to select “Sun f90” (4)—and a list of available C/C++ compilers for your machine—
we select Sun Workshop6 C++ (2). Select next the precision of the CUTEr tools (single or double), and
their size (small, medium, large or customized).

CHAPTER 1. INSTALLATION AND USAGE 8

Once this information has been provided to the installation script, you are given a default directory name
where the selected instance of CUTEr will be installed. This directory is a subdirectory of $CUTER that
you chose earlier (in this case, /usr/share/cuter/). For the present instance, the default directory is

/usr/share/cuter/CUTEr.large.sun.sol.f90

reflecting the selections you made during the early installation phase. This directory name should be
self-explanatory and should help you and other users determine where each installed instance of CUTEr
is actually stored. Notice that the precision is not reflected in the directory name. The reason is that
both single and double precision instances of CUTEr may be installed for the same machine-operating
system-compiler-size combination; these will be stored in the single/ and double/ subdirectories of the
above directory. If you wish, you may redefine the directory name and give it whatever name you like—it
need not be a subdirectory of $CUTER. Note however that you should give the full pathname of the new
directory that you choose, e.g.

/home/mjdpowell/software/yetAnotherCuter

even if this new directory is a subdirectory of the $CUTER directory:

/usr/share/cuter/aCustomCuter

It is probably good practice to be content with the default name or not to give it a cryptic or ambiguous
name. After checks to see if a similar distribution has already been installed and for the existence of the
specified directory, the installation itself begins.

The script install cuter then creates the necessary directory structure, Umakefiles and configuration
files. The final step of the installation is left to the user and is described below.

Once this phase is complete, install cuter reminds you of what you should add to your .cshrc,
.bashrc, or whichever UNIX configuration file corresponds to the shell you use. The directory struc-
ture after the initial installation is as described in the CUTEr paper provided in the CUTEr distribution and
in §1.2 and Fig.1.1. In the case we are concerned with, the CUTER environment variable should be set to
/usr/share/cuter and MYCUTER to /usr/share/cuter/CUTEr.large.sun.sol.f90 (or the alterna-
tive directory you specified during the installation phase).

install cuter also advises you to read the various README files scattered over the directory tree under
$MYCUTER. We now describe the final step of the installation using Umakefiles. There is a Umakefile in
each subdirectory of $MYCUTER. Each of these Umakefiles needs to appropriately use the configurations
files stored in $MYCUTER/config so as to generate Makefiles suited to your local system. This process is
usually referred to as bootstrapping1 . This is done by changing to $MYCUTER and issuing the command

prompt% ./install mycuter

at the command prompt. Please note that if both single and double precision were installed, the script
install mycuter requires a command-line argument, telling it for which precision it should bootstrap
the Umakefiles. In an attempt to follow the main guidelines for the CPP — the C preprocessor, on which
Umakefiles are based — the argument to install mycuter takes the form of a symbol definition. More
precisely, if the user wishes to remake the double precision version of CUTEr, the command is

prompt% ./install mycuter -DDoublePrecision

1We have reused this terminology, used for Imakefiles—configuration files generally used to install the X-Window system.
Umakefiles are in fact a much simplified version of Imakefiles

CHAPTER 1. INSTALLATION AND USAGE 9

and similarly, for the single precision version,

prompt% ./install mycuter -DSinglePrecision

Refer to the file IMPORTANT for the latest details. Do not let make’s output confuse you. On a LINUX

system, and because make is usually accompanied by the -w command-line option, using the standard g77
compiler, the output of the above command looks like

umake -I./config -DIsg77 -DLargeSize -DDoublePrecision
+ /bin/rm -f Makefile.bak
+ /bin/mv Makefile Makefile.bak
umake -I./config -DTOPDIR=. -DCURDIR=. -DIsg77 -DLargeSize -DDoublePrecision
making Makefiles in bin...
make[1]: Entering directory ‘/home/do/Cuter4Linux/bin’
make[1]: Nothing to be done for ‘Makefiles’.
make[1]: Leaving directory ‘/home/do/Cuter4Linux/bin’
making Makefiles in double...
make[1]: Entering directory ‘/home/do/Cuter4Linux/double’
making Makefiles in double/bin...
make[2]: Entering directory ‘/home/do/Cuter4Linux/double/bin’
make[2]: Nothing to be done for ‘Makefiles’.
make[2]: Leaving directory ‘/home/do/Cuter4Linux/double/bin’
making Makefiles in double/config...
make[2]: Entering directory ‘/home/do/Cuter4Linux/double/config’
make[2]: Nothing to be done for ‘Makefiles’.
make[2]: Leaving directory ‘/home/do/Cuter4Linux/double/config’
making Makefiles in double/lib...
make[2]: Entering directory ‘/home/do/Cuter4Linux/double/lib’
make[2]: Nothing to be done for ‘Makefiles’.
make[2]: Leaving directory ‘/home/do/Cuter4Linux/double/lib’
making Makefiles in double/specs...
make[2]: Entering directory ‘/home/do/Cuter4Linux/double/specs’
make[2]: Nothing to be done for ‘Makefiles’.
make[2]: Leaving directory ‘/home/do/Cuter4Linux/double/specs’
make[1]: Leaving directory ‘/home/do/Cuter4Linux/double’

This is normal output and it indicates that everything worked out smoothly. make is simply echoing what
it attempts to do in each subdirectory. A message like “Nothing to be done for ‘Makefiles’.” simply
indicates that the subdirectory where make is currently working does not have further subdirectories. On
most systems, make is less verbose.

The above command should be able to properly generate the Makefiles in each subdirectory. These Make-
files should also only contain standard commands, as every effort has been made to avoid using exotic
Makefile features and capabilities, such as the $@@ construct. A README file accompanies every Makefile
to describe what it does and which targets it recognizes. Users are advised to take a look at these files.
The documentation files and a basic knowledge of make should be enough for you to feel comfortable
with the (re)generation of the various parts of CUTEr. Once the Makefiles are generated, the only thing

CHAPTER 1. INSTALLATION AND USAGE 10

that remains to be done is the usual make all. However, as users who have some experience with make
know, make outputs a lot of information—it basically echoes to the standard output every action it takes.
The -s command-line option to make lowers its verbosity level and basic information on how the build
progresses only is printed. Thus, users should build CUTEr using the command

prompt% make -s all

This command completes the installation of CUTEr, using Umakefiles. On my Linux system, the installa-
tion takes a couple of minutes and make’s output looks like

Getting UNIX commands right [Ok]
Casting script.sed [Ok]
Casting cast.sed [Ok]
Casting local.f [Ok]
Adding timer [Ok]
Building local.o [Ok]

making all in ./bin...
Casting cob [Ok]
Casting fil [Ok]
Casting gen [Ok]
...

Building uofg.o [Ok]
Building uprod.o [Ok]
Building ureprt.o [Ok]
Building usetup.o [Ok]
Building ush.o [Ok]
Building uvarty.o [Ok]
Archiving libcuter.a [Ok]

making all in double/specs...

On workstations, the installation should be expected to take longer. During this phase, keep an eye on
the screen and look for the [Ok] indicators. Should make come across some difficulty, this sequence
of indicators should be interrupted by an error message. To know more about the problem, read the
README file in the directory where the problem occured to try to indentify the target which make was
attempting to build, and re-run make on that target without the -s option.

You may then install a new instance of CUTEr, which may be for a different architecture, or one corre-
sponding to an already-installed instance, with a different precision or size. In all cases, the environment
variable MYCUTER should point to the current, working, instance of CUTEr.

The install cuter script keeps track of all installed instances of CUTEr on your system in the log-
file $CUTER/log/install.log. This file may be used, for instance, to have MYCUTER point to the
right distribution. For the purpose of illustrating the above, assume the three distributions given in Ta-
ble 1.1 are installed in their default directory. Besides date information, the following will be found in
$CUTER/log/install.log, where the exclamation mark (!) is a separator.

double large Sun-workstation sol f90 ! $CUTER/CUTEr.large.sun.sol.f90
double medium Intel-like-PC lnx g77 ! $CUTER/CUTEr.medium.pc.lnx.g77
double large Compaq-Alpha t64 f90 ! $CUTER/CUTEr.large.alp.t64.f90

CHAPTER 1. INSTALLATION AND USAGE 11

1.1.2 update cuter

As it is our intention to upgrade over time (or fix if necessary) the tools supplied in the CUTEr package,
a mechanism for keeping an installed system up to date, and to install newer instances of the tools, is
required. This is the role of the update cuter script. If all goes well, you should not have to use
update cuter immediately. Announcements of bug-fixes and enhancements will be posted and indicated
on the website. There are two forms of the command.

In its first form, update cuter takes two command-line options, as follows

prompt% update cuter filename

where filename is the name of the file to upgrade, possibly specified with a path. Suppose, for example,
that the file ufn.f has been improved so as to perform its task faster, upgrading your current instance of
CUTEr is achieved by typing

prompt% update cuter ufn.f

at the command prompt. This command first copies the new source file to proper location, which is in this
case $CUTER/common/src/tools. If there are currently both single and double precision instances, you
will be asked to choose which you would like to update; if there is only one instance under $MYCUTER,
the precision will be chosen accordingly. The script then casts and compiles the incoming file, and finally
updates the CUTEr library ($MYCUTER/double/lib/libcuter.a). Of course, corresponding actions are
performed depending on the type of filename: if it is a script, it is only cast, and stored in its proper place,
and if it is a documentation file, it is simply moved to $CUTER/common/doc.

In its second form, update cuter takes three command-line options, described as follows

prompt% update cuter -a filename

where filename is the name of a file describing a list of CUTEr files to be upgraded. The file filename
should contain

1. on its first line, the directory where the new (upgraded) files can be found, and

2. on subsequent lines, the names of those upgraded files, possibly preceded by their destination di-
rectory. A single file per line should be given.

Note that preceding the file names by their destination directory is not compulsory; in fact, the path is
ignored and update cuter tries to determine the correct path for itself. As an example, suppose that the
tools ufn.f, install cuter, compiler.cry.unc.f90 and sdknit.pro have been upgraded, and are
temporarily stored in /home/upgrade. A corresponding input file might be

/home/upgrade
$CUTER/common/src/tools/ufn.f
$CUTER/build/scripts/install cuter
compiler.cry.unc.f90
sdknit.pro

but exactly the same result would be produced by the simpler file

CHAPTER 1. INSTALLATION AND USAGE 12

/home/upgrade
ufn.f
install cuter
compiler.cry.unc.f90
sdknit.pro

or by the deliberately confusing file

/home/upgrade
/usr/share/junk/ufn.f
/home/upgrade/install cuter
/home/downgrade/compiler.cry.unc.f90
/opt/degrade/sdknit.pro

As above, CUTEr copies these files from /home/upgrade to their proper location, prompts for the pre-
cision required (if necessary), casts and, where necessary, compiles the incoming files, and updates the
specified instance stored under $MYCUTER.

The additional command-line option -m forces update cuter to simply move the files to their proper
location and to skip compilation. Help may be obtained from update cuter through either of the -h,
-help or --help flags.

To summarize, the complete synopsis of update cuter is as follows

update cuter [-h | -help | --help] [-m] [-a listFile | newFile]

In the situation where CUTEr has been unpacked but no further installation steps were performed, or
all current instances were deleted, update cuter still can move the updated source files to their proper
location, skipping the compilation phase. The same syntax as above can be used.

Caution: attention should be paid to the fact that update cuter works by source-ing the UNIX com-
mands from the file $MYCUTER/precision/config/cmds (where precision is the required precision) and
that these commands define the temporary directory used during compilation phase. In most cases, this
temporary directory is simply /tmp. This temporary directory must not be the same as that specified in
the first line of update cuter’s input file (/home/upgrade in the examples above).

1.1.3 uninstall cuter

The script uninstall cuter is used to remove a previously installed instance of CUTEr from your sys-
tem. If called with no argument, the user will be asked to choose which distribution to remove from a list
of the instances found on the system. Otherwise, the only argument is the name of the directory containing
the distribution to be removed. We illustrate the second case. Referring again to Table 1.1, assume we
wish to remove the Compaq-Alpha distribution. This is done by issuing the command

prompt% uninstall cuter $CUTER/CUTEr.large.alp.t64.f90

at the command prompt. If this directory contains both the single and double precision instances, you
will be prompted for which should be removed. There is no possibility, at the moment, to remove both
instances at once. If single or double precision instance only is present, the whole directory will be
deleted as will the corresponding entry in $CUTER/log/install.log. Note that un-installing should
be done from the same machine from which the installation command was issued, as the corresponding

CHAPTER 1. INSTALLATION AND USAGE 13

directory might not be recognized on other machines. Issuing the command

prompt% uninstall cuter --help

will display a short help message. The script is itself self-documented and the user may consult it for
more information.

1.1.4 Rebuilding CUTEr

A rebuild of CUTEr may turn out to be necessary whenever CUTEr informs the user that the workspace
dimensions need to be increased—a rebuild may also turn out to be necessary whenever prototype files are
modified, or in general, whenever any basic file is modified. CUTEr itself usually issues warning messages
whenever the workspace is insufficient, urging the user to increase a particular (set of) parameters. These
parameters may be tuned in tools.siz which can be found in

$MYCUTER/precision/config

where precision is either ‘single’ or ‘double’, according to your installation. For the change to take effect,
the CUTEr tools need to be cast and compiled again. Assume the Solaris installation is modified. All
the user needs to do to make sure he or she rebuilds everything that needs to be rebuilt is change to the
directory $MYCUTER and issue a

prompt% make -s all

make then takes care of everything and rebuilds whichever targets depend on the updated files.

1.2 The CUTEr tree

One of the defects of CUTE is that it was not designed to simultaneously support a multi-platform envi-
ronment, that is instances of the environment that could be used simultaneously from a central server on
several (possibly different) machines at the same time. Moreover, using CUTE on a single machine in
conjunction with several different compilers (a case that frequently occurs when testing new software) is
impossible. Furthermore, handling different instances of the environment corresponding to different sizes
of the tools (that is the size of the test problems that they can handle) is also impossible. The reason for
these difficulties is that the structure of the CUTE files, as described in [?], does not lend itself to such use,
since it only contains a single subtree of objects files. If we call the combination of a machine, operating
system, compiler and size of the tools an architecture, the obvious solution is then to allow several such
subtrees in the installation, one for each architecture used.

However, as soon as the possibility of using architecture dependent subtrees is raised, the proper identi-
fication of the parts (scripts, programs) of the environment that are independent of the architecture also
become an issue. Since it would be inefficient to store copies of these independent scripts and programs
in each subtree, it is natural to store them in a data structure which is itself disjoint from the dependent
subtrees. Finally, the multiplication of subtrees containing sometimes very similar but yet vitally different
data makes the maintenance of the environment substantially more complicated, and therefore requires
enhanced tools and a clear distinction between the parts of the environment that are related to testing
optimization software and those related to its own maintenance.

The directory organization chosen for CUTEr, shown in Figure 1.1, reflects these preoccupations. We now

CHAPTER 1. INSTALLATION AND USAGE 14

briefly described its components.

Starting from the top of the figure, the first subtree under the main $CUTER directory (the main root of
the CUTEr environment) is build, which essentially contains all the files necessary for installation and
maintenance. Its arch subdirectory contains the files defining all possible architectures that are supported
by CUTEr, allowing the user to install new architecture dependent subtrees in an evolving manner, de-
pending on the testing needs, the evolution of the platforms, systems and compilers. The prototypes
subdirectory contains the parts of the environment which have to be specialized to one architecture before
it can be used. We call such files prototypes and the process of specializing them to a specific architecture
casting. The prototype files include a number of tools and scripts whose final form typically depends on
compiler options and the chosen size of the tools. Finally, the last subdirectory of build, named scripts,
contains the environment maintenance tools and various documentation files.

The second subtree under $CUTER is called common and contains the environment data files that are rele-
vant for its purpose, the testing of optimization packages, but that are independent of the architecture. Its
first subdirectory, doc, contains a number of documentation files concerning the environment (such as a
description of its structure, the description of procedure to follow for interfacing the supported optimiza-
tion packages, the complete SIF reference document, . . .), but not a description of the CUTEr tools and
scripts themselves. These are documented in the man subdirectory (and, as is common on Unix systems,
its man1 and man3 subdirectories). The src subdirectory contains a number of subdirectories that contain
the source files for many of the environment utilities: tools contains the sources of the Fortran tools used
in user’s programs, while matlab contains all the “m-files” that provide a MATLAB interface to the envi-
ronment. The pkg subdirectory of src is used to stored the information related to the various optimization
packages for which CUTEr provides an interface. There is one subdirectory for each such package (we
have represented that for the COBYLA and VE12 packages), typically including an algorithmic specifica-
tion file or the source code of the package if available. The subdirectory include of common contains the
necessary header files for the interfaces between CUTEr and C codes. The last subdirectory of common,
sif, contains a few test problems in SIF format.

The next subdirectory under $CUTER is called config and contains all the configuration and rules files
which are relevant to umake when the latter is used to bootstrap the various Imakfiles in order to create
the necessary Makefiles.

The log subdirectory of $CUTER contains a log of the various installations (and, possibly, subsequent
un-installations) of the environment for the various architectures.

The remaining subdirectories of $CUTER are all architecture dependent: each of them corresponds to the
installation of CUTEr on a specific machine, for a given operating system and compiler and for a given
tool size. The figure only represents one, but the continuation dots at the bottom of the leftmost vertical
line indicate that there might be more than one. The name of these directories are (by default) auto-
matically chosen at installation, but a user of one of these subtrees would typically give it a symbolic
name, like $MYCUTER, to refer to the instance of CUTEr currently in use. Each architecture-dependent
subtree is divided into its single and double precision instances (single and double, respectively), each
of these containing in turn four subdirectories. The first, bin, contains the object files corresponding to
the optimization packages driving programs and, if relevant, of the package codes. The second, lib,
contains library of cute tools and, if relevant, libraries associated with the interfaced optimization pack-
ages. The config subdirectory contains the architecture dependent files that were used to build the current
$MYCUTER subtree (they are reused when a tool or optimization package is added or updated), while specs
contains the algorithmic specification files for the optimization packages that are architecture dependent,

CHAPTER 1. INSTALLATION AND USAGE 15

$CUTER

...

build

arch

prototypes

scripts

common

doc

man
man1

man3

src

tools

matlab

include

sif

pkg

cobyla

...

hsl ve12

config

log

$MYCUTER
for a given
machine
op. system
compiler
size

bin

single

bin

lib

config

specs

double

bin

lib

config

specs

Figure 1.1: Structure of the CUTEr directories

CHAPTER 1. INSTALLATION AND USAGE 16

if any. Finally, $MYCUTER/bin contains those scripts which are architecture-dependent, but not precision-
dependent.

The fact that the CUTEr tools are now stored in the form of libraries (while they were stored as a collection
of individual object files in CUTE), is another novel feature. This allows a much simpler design of new
optimization package interfaces, since the interface no longer need to specify the exact list of tools which
have to be loaded together with the package.

A final new feature of the environment organization is that the documentation is available via the usual
man command for the scripts and tools, and both in acsii and pdf formats for the rest. It is hoped that this
will make access to the relevant information more convenient for users.

1.3 Interfacing CUTEr and Matlab(R)

We describe in this section how CUTEr is interfaced with Matlab, remind basic concepts about MEX-Files
and describe how new interfaces should be added.

1.3.1 MEX-Files basics

Besides being a self-sufficient environment, Matlab provides an Application Program Interface (API) to
support external user-defined subroutines. This interfacing is realized through dynamically-linked sub-
routines, compiled by Matlab from C or Fortran source code, referred to as MEX-Files. For a thorough
exploration of MEX-Files accompanied by numerous examples and details, refer to your local Matlab
documentation. Recall also that all API-related documentation is available online using the Matlab Help
Desk. We now briefly review the main features of MEX-Files and what the user should provide for Matlab
to be able to compile the interface.

Any user-provided C or Fortran computational routine may be interfaced with the Matlab environment us-
ing the mex script. Within Matlab, the mex command takes the name of the routine to be interfaced as an ar-
gument plus a number of options and possibly other files. Refer to the mex script documentation for a com-
plete list of all supported options. For every routine the user wishes to interface with Matlab, a gateway
routine must be provided in order to inform Matlab about the number of arguments that the computational
routine takes and what their type is. This gateway routine calls the user-defined computational routine
as a subroutine. The file resulting of the compilation and linking of these two routines is called a MEX-
File. Assume your own Fortran routine qrFactor.f is to be interfaced with Matlab and that a gateway
is provided in the file qrFactorg.f, Matlab compiles and links qrFactor.f once it is given the command

matlab% mex qrFactor.f qrFactorg.f

Possibly, if several user-defined routines are to be compiled within Matlab, the gateway routine may
interface them all at once. For details regarding the construction of a gateway, the reader is referred to the
Matlab documentation.

1.3.2 CUTEr and MEX-Files

With CUTEr, gateway interfaces to the CUTEr tools are provided in three files. The file utools.f inter-
faces the unconstrained optimization tools, ctools.f interfaces the constrained optimization tools and

CHAPTER 1. INSTALLATION AND USAGE 17

gtools.f contains general tools used by utools.f and ctools.f. These gateway files can be found in

$CUTER/common/src/tools/

while shortcut files to call the corresponding routines may be found in

$CUTER/common/src/matlab/

For example, $CUTER/common/src/matlab/ contains the file usetup.m which allows the user to simply
call the usetup tools by typing

matlab% [x,bl,bu]=usetup;

at the Matlab prompt instead of

matlab% [x,bl,bu]=utools(’usetup’);

Note that the calling sequence from within Matlab may to some extent differ from the “usual” Fortran
calling sequence.

Help is available from within Matlab the usual way, by typing

matlab% help toolname.

For example,

matlab% help usetup

briefly documents the usetup tool. Note that MEX-Files created from Fortran source code may only
handle double precision data. As a general rule, a C or Fortran routine or function compiled and linked
into a MEX-File is called using

matlab% [o1,o2, . . . ,on] = function name(i1, i2, . . . , im);

where o1,o2, . . . ,on is the output arguments list (specified within square brackets) and i1, i2, . . . , im is the
input arguments list.

The gateway interfaces use the mxCopy construct by default. If your C or Fortran compiler supports the
%val construct, which implements calls by address instead of calls by value, it should be used so as to
free memory used by (no longer necessary) temporary variables and to speed up execution. Besides being
more intuitive, the %val construct also considerably eases the programming effort, shortens the code and
makes better use of available memory.

1.3.3 Using CUTEr from within Matlab

Compiling and linking the CUTEr tools with a solver written in C or Fortran, and to be used in Matlab
is done by creating the corresponding MEX-File. This is the purpose of the two scripts sdmx and mx,
found under $MYCUTER/bin. The purpose of these two scripts shadows that of the other scripts; sdmx first
SIF-decodes the problem it is given as an argument and leaves the creation of the MEX-Files to mx. mx
invokes the C or Fortran compiler distributed with Matlab, links all the object files and libraries together
and finally creates the MEX-File, which can be called as a regular Matlab function.

Versions of Matlab older than 6.0 used to have separate C and Fortran compilers, often called respectively
cmex and fmex. Recent versions have merged the two compilers into one, mex, making the other two
obsolete. You should update your file $MYCUTER/precision/config/cmds to reflect your local instance

CHAPTER 1. INSTALLATION AND USAGE 18

of Matlab. Please also update $CUTER/build/arch/system.your system accordingly, to make your
modifications system-wide. For the above reason, the CUTEr interfaces to Matlab are no longer called
sdmex and mex, but sdmx and mx.

For instance, to compile and link all the unconstrained CUTEr tools with the problem MSQRTALS.SIF, use

prompt% sdmx -u MSQRTALS

Note the use of the -u command-line option to sdmx in order to use the unconstrained tools. To use
the constrained tools, simply omit the -u option. Also note that Matlab MEX-Files always use double
precision and therefore, a double-precision SIF decoder should have been installed on the system.

Place the MEX-File thus generated in the same directory as the files produced by the SIF decoder, and in
particular OUTSDIF.d, and the interfaces described in §1.3.2 are ready to be called from Matlab.

If your problem has already been decoded, the MEX-File can be regenerated using the command

prompt% mx -u

1.3.4 Adding a new tool

Should the user add new C or Fortran tools to CUTEr that are to be interfaced with Matlab, utools.f
and/or ctools.f should be updated accordingly and the corresponding .m file should be created and
stored in the directory $CUTER/common/src/matlab/. For information on MEX-File debugging, refer to
your local MATLAB documentation.

The user should also pay attention to their local implementation of pointers. If the mxCopy construct
is used, pointers should be declared as integer*8 on DEC Alpha and 64-bit SGI machines and as
integer*4 on all other platforms. If the local Fortran compiler supports this option, a clear multi-platform
code may be obtained by having the C preprocessor map the pointers to the correct declarations at the pre-
processing stage.

Note finally that after compilation and linking, the name of the resulting MEX-File will have an extension
that depends on the platform on which compilation was performed. For example, this extension is mexsol
on Sun machines running Solaris, and mexsg64 on 64-bit SGI machines.

1.4 User-modifiable parts

Nearly all the Fortran source files, stored in $CUTER/common/src/tools, have user-modifiable parts.
These parts are not directly included in the Fortran source code, but cast prior to compilation. The
files containing the user-modifiable data are tools.siz and sifdec.siz. After the initial installation,
these files will be found in the CUTEr directory $MYCUTER/[single|double]/config. If modified,
the CUTEr distribution may be rebuilt using the new parameter values by the rebuild script, located in
$CUTER/build/scripts.

Some Fortran source files, like clsf.f and slct.f, have hardcoded user-modifiable parts. These are
usually located at the top of the file, between banners, such as

C--------- THE FOLLOWING SPECIFICATIONS MAY BE MODIFIED BY THE USER ----------

and

CHAPTER 1. INSTALLATION AND USAGE 19

C---------------- END OF THE USER MODIFIABLE SPECIFICATION -------------------

1.5 CUTEr tools

Problems are fully described in a Standard Input Format (SIF) file. This file may subsequently be decoded
to provide data and Fortran subroutines for input to a nonlinear programming package.

Here we describe auxiliary subroutines which are available for users to manipulate the decoded data. The
Fortran source of these programs, along with the subroutines obtained when decoding the SIF file, should
be compiled with the user’s optimization package.

The CUTEr tools are described in the man pages, category 3, which may be viewed using the man com-
mand, its X interface xman, or, on LINUX systems, by issuing less manpage where manpage is the man
page to be viewed. The man pages are stored in $CUTER/common/man, and this directory should appear
in the user’s MANPATH. Table 1.2 contains those tools related to unconstrained or bound-constrained min-
imization as of March 24, 2005, along with a brief description, and Table 1.3 contains a list of CUTEr
tools for constrained minimization. The ureprt and creprt tools produce statistics about a particular
run. Users of the previous versions of CUTE will notice the strong similarity in the tools names.

Whenever the description states that the Hessian matrix of either the objective or the Lagrangian function
is in sparse format, it is implicitly understood that it is stored in coordinate format. Explicit mentions
appear whenever this matrix is stored in finite-elements format.

Note on the creprt tool

As CUTEr features tools allowing users to evaluate a single constraint and as reporting the number of
evaluations of each constraint in the final statistics is not practical, the statistics report a measure of the
this quantity, defined as

#eval(c) =
∑i #eval(ci)

m
,

where ∑i #eval(ci) is the sum of the total number of times each individual constraint is evaluated and m
is the number of constraints in the problem. Note that if the algorithm always evaluate all constraints
at once, this measure is an integer. Otherwise, it may be a real number. The purpose of this ratio is to
provide a measure of the number of constraint function evaluations (as compared to its maximum : m) in
the course of the iterations.

1.6 CUTEr sizes

The CUTEr package is distributed with three default “sizes”: large, medium, and small. In addition, there
is a custom size, which, as the term indicates, may be suitable for situations demanding a specialized
configuration. These sizes refer to the size of the memory available for problem decoding and solution,
and hence are directly related to the size (the amount of data) of the problems that CUTEr can tackle. It
may happen that the predetermined sizes do not fit your favorite problem or your machine, and that you
wish to specify your own. Typically, when running too large a problem, CUTEr will complain that one of
the size parameters is too small and stop. You then have to increase this parameter (if this is possible on

CHAPTER 1. INSTALLATION AND USAGE 20

your machine) in order to handle the problem. This modification of the CUTEr array sizes is explained
below.

We first note that the dependency on problem size occurs in both the decoding of the problem SIF file into
data structures and subroutines and in the computation of the required problem values by the provided
evaluation tools. Indeed, the problem dependent data is fully specified by its associated SIF file and must
be taken into account in all stages up to the numerical solution process. Therefore, the size of both the
SIF decoder and the tools (and indeed, the interface optimizers) must be adequate for the problem.

The actual choice of one of the predetermined sizes is made when running the install cuter command,
which prompts the user for the desired size. In fact, install cuter, or the Makefiles, depending on
which CUTEr you are using, cast the source code against a “size mask” corresponding to the selected size,
and thereby determines the dimensions of the various arrays used in the code. The assignment statements
are differentiated by their first four characters:

CBIG specifies the large size
CMED the medium size
CTOY the small size
CCUS the custom size

Note that the custom size is first thought of as larger than the large size, but nothing prevents the user from
building an intermediary size or a smaller size than the toy size.

Changing the size of the CUTEr distribution in the sense just described may call for a partial re-installation.
If most (or all) parameters must be, say, increased, it might be worth considering simply re-installing
CUTEr using a larger size (e.g. large if medium turns out to be insufficient for your purposes). To that
end, execute install cuter again and select the correct size. In case very few parameters need to be
changed, the procedure described below might be considered. We now examine this procedure in more
detail.

1.6.1 tools sizes

The tools sizes are gathered in the file $MYCUTER/precision/config/tools.siz, which contains the fol-
lowing parameters.

Parameter Brief description

LIWK the size of the integer workspace array used by the algorithms
LWK the size of the single or double precision workspace array used

the algorithms, according to the precision of the instance installed
LLOGIC the size of the logical workspace array used by the algorithms
LCHARA the number of ten character strings used as workspace by the algorithms
LFUVAL the size of the array used to store the problem’s function and derivative values.

These parameters are assigned a value upon initial installation of CUTEr on the system. These values
should be changed according to CUTEr messages issued at run-time, and CUTEr should be rebuilt.

Note that the main drivers, whose names match the regular expressions *ma.f and *ma.f90, declare
parameters such as MMAX—the maximal number of constraint functions in the problem—which are not

CHAPTER 1. INSTALLATION AND USAGE 21

found in tools.siz. It may happen that CUTEr aborts the solving of a problem because one of these
parameters has not been set, in the main driver source file, to an appropriate value. Since these parameters
are package-dependent rather than architecture-, or size-dependent, they should be set to an appropriate
value in the source file and the latter should be recast and recompiled.

1.6.2 Sizes for the MATLAB interface tools

If the size of the MATLAB interface tools is to be modified, the parameters NMAX (the maximum number
of variables in a problem) and MMAX (the maximum number of constraints in a problem) should be altered
at the beginning of the files ctools.f and utools.f.

Changing compiler flags

In some circumstances, it might be useful to alter the predefined compiler flags. An example might be
when some new level of code optimization becomes available on your machine. Note that care should
be exercised with code optimizers: we know of cases where the optimizers introduce real bugs into the
code. As a consequence, it might be a good idea to turn optimization off before deciding that some
strange behaviour of the package is anomalous and worth reporting. This is another reason why modifying
compiler flags might be useful. Some operating system revisions might also require that you change
machine dependent constants or procedures (such as the timer).

If compiler flags should be changed prior to a rebuild, the user should do so by altering the CompileCmd
and LoadCmd variables corresponding to their compiler in the file $MYCUTER/config/system.cf or in
$MYCUTER/config/all.cf.

If compiler flags should be changed to affect all subsequent installations of CUTEr, the user should do so
in some or all the files $CUTER/config/system.cf, including $MYCUTER/config/all.cf.

For instance, if the compiler in question is only found on SUN machines, the file sun.cf should be
modified. If it may be found on any machine, the file all.cf should be modified.

System dependent constants and functions

All the system dependent constants and functions are specified in the $MYCUTER/config/system.cf or
in $MYCUTER/config/all.cf files, and also in the Fortran file $MYCUTER/precision/config/local.f
after the initial installation. If these need to be changed, this latter file is the one on which to operate
before rebuilding CUTEr. Keep in mind that altering some or all the $CUTER/config/system.cf or in
$CUTER/config/all.cf files will affect all subsequent installations of CUTEr.

A set of hashing routines

The routines HASHA, HASHB, HASHC and HASHE provide a Fortran hashing tool. They are system depen-
dent in that they rely on the number of bytes used to represent an integer within the particular Fortran
dialect used. This number of bytes is set in the parameter NBYTES in $MYCUTER/config/system.cf or
in $MYCUTER/config/all.cf. If your Fortran compiler uses an “unorthodox” number of bytes for its
integers, you will have to change the value of NBYTES.

CHAPTER 1. INSTALLATION AND USAGE 22

A definition of the arithmetic constants

The supplied functions SMACHR and DMACHR return values for various machine dependent constants, for
single and double precision arithmetic, respectively. These machine constants are denoted Rn in single
precision and Dn in double precision. We recapitulate them in the following table

Parameter Brief description

R1, D1 the smallest positive number ε1 such that 1+ ε1 > 1
R2, D2 the smallest positive number ε2 such that 1− ε2 < 1
R3, D3 the smallest nonzero positive number
R4, D4 the smallest full precision positive number;
R5, D5 the largest finite positive number

Each of these numbers should be modified, either in the configuration files all.cf and/or <your system>.cf,
found under $MYCUTER/config.

A CPU timer

This is a real function CPUTIM, that returns the current CPU-time used by the package, expressed in
seconds. This timer is, unfortunately, highly system dependent. The specific code for CPUTIM is originally
located in $CUTER/build/arch/compiler.*.*.* and concatenated with local.f at cast time, during
installation.

1.6.3 Rebuilding CUTEr

Rebuilding CUTEr is done as described in §1.1.4. Simply change to $MYCUTER and issue a make -s all
to make sure that everything that needs to be rebuilt is rebuilt.

1.7 Driver programs

Driver programs are Fortran source main programs that call relevant user-provided subroutines from a
particular optimization or linear algebra package, and which obtain function, derivative and other problem
information directly from CUTEr subroutine tools. A driver is compiled and run by the interface to that
package.

For example, the CUTEr distribution includes an interface to the PRAXIS package. This interface is
provided by two UNIX scripts, sdprx.pro and prx.pro, stored in $CUTER/build/prototypes, which
are cast into sdprx and prx and subsequently stored in $MYCUTER/bin. Both scripts make use of the
auxiliary script runpackage, cast from prototype runpackage.pro, which is common to all interfaces.
More information on the usage of interfaces is given in §1.9. The role of these three scripts is to decode the
input problem into the proper Fortran subroutines, gather the necessary libraries and object files, link and
compile them together and finally launch the PRAXIS driver, whose source prxma.f is cast and linked
into prxma.o, stored under $MYCUTER/precision/bin. The driver sets up all the necessary data structures
and environment required by PRAXIS and calls the PRAXIS subroutines to solve the input problem.

CHAPTER 1. INSTALLATION AND USAGE 23

All supported packages are represented by an abbreviated name. For the purpose of an illustration, assume
this abbreviation is pak. The interfaces scripts are called sdpak.pro and pak.pro, and the Fortran driver
program pakma.f.

The packages themselves are *not* supplied in the CUTEr distribution as we only aim to provide a useful
and efficient testing and developing environment. It is the responsibility of the user to get the package
source or object files and properly link them.

More details regarding a specific supported package pak may be found in
$CUTER/common/src/pkg/pak/README.pak.

1.8 The SIF decoder

1.8.1 Where is the SIF decoder?

At this point, it is crucial to mention that, in contrast with earlier version of CUTE [?], the SIF decoder
is no longer embedded in CUTEr. This choice was made for several reasons, some of which are now
briefly explained. First, it seemed important to us to have a consistent set of tools within CUTEr which all
depend, in an indentical manner, on the SIF decoder. The decoder, however, could serve other purposes
than that of being a gear of the testing environment. As a prime example, the SIF decoder is a vital
part of the forthcoming second release of the LANCELOT package [?], LANCELOT-B. It thus appeared
more consistent to isolate the decoder and simply have the other packages—CUTEr, LANCELOT-B, but
there could also be others—refer to it whenever necessary. Another reason is ease of maintenance, and
consistency when upgrading the decoder. All the packages which refer to it are using the same version.
Finally, the SIF decoder in its own right may evolve and develop separately. An illustration of this fact
is its recent ability to generate routines for function evaluation suited for input to the HSL automatic
differentiation packages HSL AD01 and its threadsafe counterpart HSL AD02 [?].

1.8.2 SIF decoder sizes

Warning or error messages issued by the SIF decoder should be interpreted as related to the SifDec
package, and the adjustments which they suggest should be made in the file sifdec.siz found under
$MYSIFDEC/precision/config/. For more information, see [?].

1.8.3 CUTEr and automatic differentiation

The Harwell Subroutine Library [?] contains two packages supplying automatic differentiation facilities.
If either of these packages, HSL AD01 or its threadsafe counterpart HSL AD02, is available to the user,
automatic differentiation may be used within CUTEr. Please note however that HSL AD01 is a Fortran 90
package while HSL AD02 is a Fortran 95 package. Suitable compilers must therefore be available. For-
ward and backward modes both provide first and second-order derivatives, while higher-order derivatives
are available in forward mode only. We refer the user to [?] for more detailed information. As will be
explained in § 1.9, command-line options to the interfaces allow users to select forward or backward
mode, and which package they wish to use. The automatic differentiation packages should be used like
any optimization package, i.e. they should be compiled but not linked. The object files should then be

CHAPTER 1. INSTALLATION AND USAGE 24

placed, or linked to from, the directory $MYCUTER/precision/bin.

1.9 Interfaces

This section describes existing CUTEr interfaces with optimization and linear algebra packages and how
to create a new interface.

Information and usage of the different interfaces to existing optimization and linear algebra packages
may be found in the man pages $CUTER/common/man/man1, and users should ensure that the directory
$CUTER/common/man appears on their MANPATH. The man page for the generic script script may be viewed
by issuing the command man script, its X interface xman, or, on LINUX systems, by executing the com-
mand less script.1. Table 1.4 shows the interfaces provided and the packages to which they correspond.

For the purpose of an illustration, let us now consider the unc and sdunc interfaces to the UNCMIN
unconstrained minimization package. Their calling sequences are as follows

sdunc [-s] [-h] [-k] [-o j] [-l secs] [-f] [-b] [-a j] [-show]
[-param name=value[,name=value...]] [-debug] probname[.SIF],

unc [-n] [-h] [-s] [-k] [-r] [-o j] [-l secs] [-debug].

The purpose of sdunc is to SIF–decode probname.SIF, set environment variables defining object and
specification files necessary to compile the main UNCMIN executable, and launch runpackage. The
script unc is simliar, except that it assumes that the problem has already been decoded by the SIF decoder.
The main executable is linked, compiled and run by runpackage. An important difference with previous
versions of CUTE is that runpackage is independent of any interface; only those scripts given in Table 1.4
depend on the optimization package which must be interfaced. The arguments of sdunc and unc are
thoroughly described in the man pages. We briefly review them here.

-s link, compile and run the single precision instance. Double precision is the default;

-h prints a help message;

-k keep the load module after use;

-r (unc only) discourage recompilation of the test problem;

-o j verbosity level: -o 0 is silent mode and -o 1 is verbose mode. The default is -o 0;

-l secs limits the CPU running time to secs seconds;

-f (sdunc only) generate the relevant subroutines for automatic differentiation in forward mode;

-b (sdunc only) generate the relevant subroutines for automatic differentiation in backward mode;

-a j (sdunc only) when used in conjunction with -f or -b, -a 1 uses the older HSL automatic differen-
tiation package AD01, which -a 2 uses the newer, threadsafe, automatic differentiation package
AD02;

-show (sdunc only) displays possible parameter settings for probname[.SIF]. Other options are ignored;

-param (sdunc only) cast probname[.SIF] against explicit parameter settings;

CHAPTER 1. INSTALLATION AND USAGE 25

-debug links the libraries and compile with -g option so as to allow debugging;

-n (unc only) use the load module if it exists. The default is to recompile.

The main object files for the supported packages (i.e. in this case, uncmin.o) should be placed in (or
symlinked to from the directory) $MYCUTER/precision/bin, while the required specification files should
be placed in (or symlinked to from) the current directory.

1.10 Creating a new interface for an optimization package

1.10.1 General procedure for Fortran and C interfaces

The purpose of this section is to explain how one can build interface tools for another optimization pack-
age, similar to those interfaces sdunc and unc provided for UNCMIN. We provide generic scripts sdgen
and gen to make this process easier. These scripts can be found in the $CUTER/build/prototypes
directory.

For illustrative purposes, we assume the package for which one wishes to provide an interface is called
pack. We suppose that both single and double precision instances of the package are available and that
interfaces in both precisions are required. An interface for just one of the precisions can be obtained
by ignoring any of the comments relating to the other. A number of additional comments regarding the
interfacing of packages written in C are given in §1.10.2. We suggest the following steps.

1. Construct a driver program calling the new package and using the Fortran tools provided (for evalu-
ating the objective function, its gradient, etc.) The existing driver programs (uncma, mnsma, ve09ma,
stnma, etc.) might help you get started in writing this new driver.

Now compile this program into an object file called packma.o. The double precision object should
reside in the directory

$MYCUTER/double/bin

and the single precision object should reside in the directory

$MYCUTER/single/bin,

2. Compile the double precision instance of the complete set of programs contained in the pack pack-
age into one object file2 (for example, packd.o). Repeat this for the single precision instance of the
package, producing a second object file (for example, packs.o),

3. Connect to $CUTER/build/prototypes and copy sdgen.pro and gen.pro to sdpack.pro and
pack.pro respectively. This is done by typing

prompt% cd $CUTER/build/prototypes
prompt% cp sdgen.pro sdpack.pro
prompt% cp gen.pro pack.pro

at the command prompt,

4. Create the new directory $CUTER/common/src/pkg/pack,

2If users prefer, they may instead create random or static libraries libpack.a or libpack.so.

CHAPTER 1. INSTALLATION AND USAGE 26

5. Edit sdpack.pro and pack.pro and modify them as follows:

(a) change the name of the package to be interfaced from gen to pack. This is done in the
assignment of the shell variables PAC and PACKAGE at the beginning of the script, so that it
reads

setenv PAC = pack
setenv PACKAGE = pack

(b) if applicable, add or remove command-line options to the interfaces sdpack.pro and pack.pro,
paying special attention to those options that are passed over to the SIF decoder and to
runpackage.pro,

(c) properly set the PACKOBJ and SPECS environment variables to contain the object file(s)/libraries
for the package and the specification file (if any) respectively. The object files3 should lie
in $MYCUTER/precision/bin, where precision is either single or double, and the specifica-
tion file should lie in the directory $CUTER/common/src/pkg/$PACKAGE, i.e. in this case,
$CUTER/common/src/pkg/pack.

6. Possibly, alter runpackage.pro to link BLAS libraries, or other relevant libraries.

7. The scripts now need to be cast against your machine-dependent specifications. This may be done
by issuing the commands

prompt% sed -f $MYCUTER/precision/config/script.sed file.pro > $MYCUTER/bin/file
prompt% chmod a+x $MYCUTER/bin/file

at the command prompt, where file is successively sdpack and pack. If you altered runpackage.pro,
the same should be done for file=runpackage.

Note: In case your package is not going to be available on all the platforms for which you have a
CUTEr installation, modify the scripts sdgen, gen and runpackage found in $MYCUTER/bin instead
of the prototype scripts. Otherwise, it is recommended that you write prototypes and store them in
$CUTER/build/prototypes.

We would be very pleased if you could send your interface and driver program to us, so that we can
redistribute it with future versions of CUTEr, with proper ackowledgments. Thank you in advance and
good luck!

1.10.2 Interfacing packages written in C: cuter.h

We comment in this section the possibility of interfacing packages originally written in C with CUTEr. As
of yet, the LOQO interface is the only one written in C, but it is hoped that given the growing interest in
C/C++ optimization packages, this number is meant to increase.

The new subdirectory include of $CUTER/common hosts the C header file cuter.h containing various
declarations related to the coexistence of object files originating from Fortran and C source files, and
simplifying calling sequences to the CUTEr tools from C. All the definition in this header file may be
accessed by specifying

3If the user has created random or static libraries, these should appear in $MYCUTER/precision/lib

CHAPTER 1. INSTALLATION AND USAGE 27

#include{cuter.h}

at the top of your C driver.

We now briefly describe the header file cuter.h and the apparent prototypes of the CUTEr tools, as seen
from the C language.

Partly inspired by f2c.h, cuter.h defines the types

typedef long int integer;
typedef float real;
typedef double doublereal;
typedef long int logical;

meant to imitate the corresponding Fortran data types. Users may then define variables of type doublereal
when having in mind a corresponding Fortran 77 variable or argument of type double precision, or a
Fortran 90 variable or argument of type real whose kind is that of 1.0D+0.

It also defines the two macros

#define FALSE_ (0)
#define TRUE_ (1)

simulating the two possible values for Fortran variables of type logical. Note the trailing underscores.

In CUTEr, positive or negative infinite values are achieved by any number larger in modulus than 1020,
hence the definition

#define CUTE_INF 1e20

in cuter.h.

For convenience, and to account for the differences between the plethora of Fortran and C compilers out
there, common apparent prototypes for the CUTEr tools have been defined in cuter.h. These apparent
prototypes follow the general pattern

TOOLNAME(arg1, arg2, . . ., argn)

where the tool name TOOLNAME must be specified in uppercase letters. Caution should be exercised when
specifying the arguments of a routine, given the fact that to interface Fortran and C, all the arguments
appearing in the argument list should be pointers. In practice, this has the consequence that integer
variables appearing in an argument list in the driver should be declared as

integer *variable name;

instead of

integer variable name;

CHAPTER 1. INSTALLATION AND USAGE 28

As is always the case in C, the exception to this is arrays, since they are always treated as pointers. Thus,
for instance, a reference to the CUTEr tool CSH with the help of cuter.h appears as

CSH(&n, &m, x, &m, v, &nnzh, &lh, h, irnh, icnh);

with the declarations
integer *n, *m, *nnzh, *lh, *irnh, *icnh;
doublereal *x, *v, *h;

Note that in these declarations, irnh, icnh, x, v and h are arrays, while the other variables simulate
Fortran integer variables. This is the reason why the addresses of the latter variables appear explicitly
in the calling sequence to CSH, while the arrays appear as if they were the “real” Fortran arguments.

The calling sequences of most tools are exactly as in Fortran—they can be seen by typing

prompt% man toolname

at the command prompt. The prototypes say that the CUTEr tools all return a void ouput.

One notable difference between Fortran and C is the way external files are handled. C uses streams while
Fortran requires that a unit number be associated to each open file. To account for this difference, and as
the unit number is required by several CUTEr tools, the two functions FORTRAN OPEN and FORTRAN CLOSE
have been defined, with apparent prototypes

void FORTRAN OPEN(integer *funit, char *fname, integer *ierr);
void FORTRAN CLOSE(integer *funit, integer *ierr);

funit being the unit number associated to the file, and ierr being the error code returned by these
functions, a value of zero indicating a successful operation. These two functions may be called to open
and close the OUTSDIF.d file generated by the SIF decoder.

1.11 Checking the integrity of a SIF file

All the interfaces given in Table 1.4 follow the same pattern. If the SIF problem has not yet been decoded,
the interface first calls the SIF decoder by means of the sifdecode script. Please pay attention to the
fact that, as mentioned in § 1.8, the SIF decoder is now distributed as a separate package and must be
installed prior to using any of the CUTEr interfaces. The main executable for the decoder must be found in
$MYSIFDEC/precision/bin/sifdec, where $MYSIFDEC is an environment variable pointing to the current
instance of SifDec. Failing to do so will result in an abort.

Once the problem has been decoded, the interface calls a common script called runpackage which links
the relocatables together, creates an executable file and finally executes it. It may be useful in some cases
to decode a SIF-encoded problem without running an optimization package afterwards, or to simply check
the syntax of the SIF file. In that respect, the sifdecode script may be called independently, from the
command line. Its syntax is similar to that of the interfaces:

sifdecode [-s] [-h] [-k] [-o j] [-l secs] [-f] [-b] [-a j] [-show]
[-param name=value[,name=value...]] [-force] [-debug] probname[.SIF]

Note that some of the command-line options only make sense when an optimization package is called

CHAPTER 1. INSTALLATION AND USAGE 29

after the problem has been decoded. For more information on sifdecode, we refer the reader to the
documentation of SifDec, [?].

1.12 Attempting installation on an unsupported architecture

As far as UNIX-like platforms are concerned, it should not be too difficult to port CUTEr. This might
require, however, a number of changes in several files. We suggest in this section where some of these
modifications could take place. Additional modifications may be necessary, depending on your local
system.

First, the installation scripts themselves may need to be altered, for compatibility reasons: the local C shell,
if there is one, may be different, or require different command-line options. For example, the very first
line of install cuter may be #!/bin/csh under Solaris, but has to be #!/bin/csh -f on LINUX

machines. All the scripts included in the CUTEr distribution are thoroughly self-documented and should
be rather quickly understood by anyone familiar with the UNIX environment and the C shell. Similarly,
as all the CUTEr scripts use the C shell, they may all need corresponding modifications.

You may need to alter a few Umake configuration files stored under $CUTER/config, such as all.cf
and/or <your system>.cf. Also make sure that new compilers that you define there appear in

$CUTER/build/arch/f.arch or $CUTER/build/arch/c.arch

for Fortran and CC++ compilers respectively, with matching symbols. More specifically, if your compiler
name is abc, then the symbol which represents it in the configuration file must be “Isabc” and the block
defining your compiler must look like

#ifdef Isabc
#define CompilerTagId abc
#define umakeCompilerFlag -DIsabc
#define CompileCmd abc77 -c
#define LoadCmd abc77
#define CompilerIsF9095 yes
#define Compile9095Cmd abc90 -c
#define Load9095Cmd abc90
#define FortranFlags -O
#define NumberOfBytes 8
#endif

where abc77 and abc90 represent the true compiler command for Fortran 77 and Fortran 90/95 source files
respectively; these need not match the abc pattern. If the compiler abc does not support Fortran 90/95,
then CompilerIsF9095 should be set to no in the above block, and the two symbols Compile9095Cmd
and Load9095Cmd should be defined to the empty string, i.e. :

#ifdef Isabc
#define CompilerTagId abc
#define umakeCompilerFlag -DIsabc
#define CompileCmd abc77 -c
#define LoadCmd abc77

CHAPTER 1. INSTALLATION AND USAGE 30

#define CompilerIsF9095 no
#define Compile9095Cmd
#define Load9095Cmd
#define FortranFlags -O
#define NumberOfBytes 8
#endif

If you wish to support a compiler for your platform which is already defined in all.cf, but the compiler
options are different on your platform, you need to make sure that your settings are not overwritten by
those in all.cf. You might, for this, define a flag in you platform.cf as part of the compiler definition
and modify all.cf so as to skip the corresponding compiler definition. For instance, compiler n95 is
defined in both mac.cf and all.cf. Since all.cf will be sourced in all cases, the compiler definition in
mac.cf contains the line

#define n95Defined

In all.cf, the definition of n95 will be skipped if the symbol n95Defined has already been defined:

#ifdef Isn95
#ifndef n95Defined
...
#endif
#endif

The file $CUTER/build/scripts/makefile.cmds will need to be altered so as to include your new
your system.cf. This modification is however trivial.

If your system does not support man pages, these will be provided in pdf and other formats on the
CUTEr website, as will updates to this general documentation and other information.

Fortran 77 files should be standard and compatible for the most part. Check your local compiler docu-
mentation for possible incompatibilities. If there is no available Fortran 90 compiler on your platform,
you will not be able to use those tools (unless you write one).

If your new installation procedure is a success, we will be pleased to include it in the next releases of
CUTEr, with proper credits. In this case, please send detailed information on your changes and on your
local system. On the other hand, please feel free to contact us if you think we may be of some help.

Many thanks and again, good luck!

http://cuter.rl.ac.uk/cuter-www

CHAPTER 1. INSTALLATION AND USAGE 31

Tool name Brief description

ubandh extract a banded matrix out of the Hessian matrix,
udh evaluate the Hessian matrix,
udimen get the number of variables involved,
udimse determine the number of nonzeros required to store the

sparse Hessian matrix in finite element format,
udimsh same as udimse, in coordinate format,
ueh evaluate the sparse Hessian matrix in finite element format,
ufn evaluate function value,
ugr evaluate gradient,
ugrdh evaluate the gradient and Hessian matrix,
ugreh evaluate the gradient and Hessian matrix in finite element format,
ugrsh evaluate the gradient and Hessian matrix in coordinate format,
unames obtain the names of the problem and its variables,
uofg evaluate function value and possibly gradient,
uprod form the matrix-vector product of a vector with the Hessian matrix,
usetup set up the data structures for unconstrained minimization,
ush evaluate the sparse Hessian matrix,
uvarty determine the type of each variable.

ureprt obtain statistics concerning function evaluation and CPU time used,

Table 1.2: The unconstrained minimization CUTEr tools as of March 24, 2005.

CHAPTER 1. INSTALLATION AND USAGE 32

Tool name Brief description

ccfg evaluate constraint functions values and possibly gradients,
ccfsg same as ccfg, in sparse format,
ccifg evaluate a single constraint function value and possibly gradient,
ccifsg same as ccifg, in sparse format,
cdh evaluate the Hessian of the Lagrangian,
cdimen get the number of variables and constraints involved,
cdimse determine number of nonzeros to store the Lagrangian Hessian,

in finite element format,
cdimsh determine number of nonzeros to store the Lagrangian Hessian,

in coordinate format,
cdimsj determine number of nonzeros to store the matrix of gradients of

the objective function and constraints, in sparse format,
ceh evaluate the sparse Lagrangian Hessian in finite element format,
cfn evaluate function and constraints values,
cgr evaluate constraints gradients and objective/Lagrangian gradient,
cgrdh same as cgr, plus Lagrangian Hessian,
cidh evaluate the Hessian of a problem function,
cish same as cidh, in sparse format,
cnames obtain the names of the problem and its variables,
cofg evaluate function value and possibly gradient,
cprod form the matrix-vector product of a vector with the Lagrangian Hessian,
cscfg evaluate constraint functions values and possibly gradients in sparse format,
cscifg same as cscfg, for a single constraint,
csetup set up the data structures for constrained minimization,
csgr evaluate constraints and objective/Lagrangian function gradients,
csgreh evaluate both the constraint gradients, the Lagrangian Hessian

in finite element format and the gradient of the
objective/Lagrangian in sparse format,

csgrsh same as csgreh, in sparse format instead of finite element format,
csh evaluate the Hessian of the Lagrangian, in sparse format,
cvarty determine the type of each variable,

creprt obtain statistics concerning function evaluation and CPU time used,

Table 1.3: The constrained minimization CUTEr tools as of March 24, 2005.

CHAPTER 1. INSTALLATION AND USAGE 33

Interface Package

cgd/sdcgd CG Descent (Hager and Zhang)
cgp/sdcgp CG+ (Liu, Nocedal and Waltz)
cob/sdcob COBYLA (Powell)
fil/sdfil FilterSQP (Fletcher and Leyffer)
gen/sdgen Generic Fortran 77 interface
gen90/sdgen90 Generic Fortran 90 interface
genc/sdgenc Generic C/C++ interface
hrb/sdhrb SIF–Harwell- or Rutherford-Boeing

sparse matrix format converter (Gould)
ipopt/sdipopt IPOPT (Wächter)
knit/sdknit KNITRO (Byrd, Nocedal and Waltz)
la04/sdla04 LA04 (Reid)
lbb/sdlbb L-BFGS-B (updated) (Nocedal)
lbs/sdlbs L-BFGS (Nodedal)
lmb/sdlmb L-BFGS-B (Nocedal)
lqo/sdlqo LOQO (Benson, Shanno and Vanderbei)
mns/sdmns MINOS (Murtagh and Saunders)
nits/sdnits NITSOL (Pernice and Walker)
nps/sdnps NPSOL (Gill, Murray, Saunders and Wright)
osl/sdosl OSL (IBM)
pds/sdpds PDS (Torczon)
prx/sdprx PRAXIS (Brent and Chandler)
snp/sdsnp SNOPT (Gill, Murray and Saunders)
stn/sdstn Stenmin (Bouaricha)
tao/sdtao TAO (Benson, Curfman McInnes, Moré and Sarich)
ten/sdten Tenmin (Schnabel and Chow)
trn/sdtrn TRON (Lin and Moré)
unc/sdunc Uncmin (Koontz, Schnable and Weiss)
va15/sdva15 VA15 (Nocedal)
ve09/sdve09 VE09 (Gould)
ve12/sdve12 HSL VE12 (Gould)
ve14/sdve14 VE14 (Gould)
vf13/sdvf13 VF13 (Powell)

Table 1.4: Interfaces between the CUTEr tools and existing optimization and linear algebra packages as
of March 24, 2005.

Chapter 2

CUTE log

In this chapter, we kept track of all the changes that CUTE has undergone since the first release.

2.1 CUTE 1.0

This is the first version of CUTE, made available in March 1993.

2.1.1 Updates since March 93

Additional interfaces

COBYLA This package is a direct search method for inequality constrained problems, that models the
objective and constraint function by linear interpolation and does not use derivatives. It is available
from Professor M.J.D. Powell, DAMTP, Cambridge University, Cambridge, UK (e-mail address:
mjdp@damtp.cambridge.ac.uk).

TENMIN This package is intended for problems where the cost of storing one n by n matrix (where n is
the number of variables), and factoring it at each iteration, is acceptable. The software allows the
user to choose between a tensor method for unconstrained optimization, and an analogous standard
method based upon a quadratic model. The tensor method bases each iteration upon a specially
constructed fourth-order model of the objective function that is not significantly more expensive to
form, store, or solve than the standard quadratic model. TENMIN is available via anonymous ftp
from ftp.cs.colorado.edu, in the directory pub/cs/distribs/tensor. Any questions about this software
should be addressed to: eskow@cs.colorado.edu

The interface includes the scripts sdten.* and ten.*, the driver tenma.f, and the file README.tenmin.
The driver was originally written by Ali Bouaricha, of CERFACS, Toulouse, France.

NPSOL This package is designed to minimize smooth functions subject to constraints, which may in-
clude simple bounds, linear constraints, and smooth nonlinear constraints. The software uses a
sequential quadratic programming algorithm, where bounds, linear constraints and nonlinear con-
straints are treated separately. Unlike MINOS, NPSOL stores all matrices in dense format, and is

34

CHAPTER 2. CUTE LOG 35

therefore not intended for large sparse problems. NPSOL is available from the Office of Technology
Licensing at Stanford University.

The interface includes the scripts sdnps.* and nps.* the driver npsma.f, an options file NPSOL.SPC,
and the file README.npsol. The driver is based on one written by Peihuang Chen of Northwestern
University, Chicago, U.S.A.

VA15 This package solves general nonlinear unconstrained problems using a limited memory BFGS
method. It is intended for large-scale problems. VA15 is part of the Harwell Subroutine Library,
1993. It is distributed United Kingdom Atomic Energy Authority, Harwell, subject to certain license
agreements. It is copyrighted jointly by the UKAEA and SERC (Science and Engineering Research
Council).

The interface includes the scripts sdlmq.* and lmq.*, and the driver va15ma.f.

MINOS 5.5 The interface written for MINOS 5.4 works without change for MINOS 5.5.

Changes to interfaces

MINOS There are now different default MINOS specifications for each size of CUTE installation (small,
medium, and large). In the CUTE distribution, these different specifications files are named MI-
NOS.sml, MINOS.med, and MINOS.lrg. The unwrap procedure copies all three of these files to
the $CUTEDIR/minos directory. The install procedure then copies the specifications file of the
appropriate size to MINOS.SPC.

MATLAB/CUTE In addition we have also included an interface which allows the CUTE evaluation tools
to be called from MATLAB

Additional platforms

DEC OSF/1 Note that OSL is not available on this platform. (All other optimization packages and CUTE
programs are available.)

DEC VMS (using g-floating double precision)

Note that OSL is not available on this platform. (All other optimization packages and CUTE pro-
grams are available.)

DOS using WATCOM Fortran compiler

Note that OSL is not available on this platform. (All other optimization packages and CUTE pro-
grams are available.)

HP-UX All optimization packages are available on this platform.

Additional tools Two new constrained tools were added to CUTE in October 1994. These tools compute
the function value and possibly the gradient of a single constraint. One tool, ccifg, stores the constraint
gradient in dense format, while the other tool, cscifg, stores it in sparse format.

In December 1994, we added second derivatives available as a sparse matrix stored in “finite-element”
format This added five new corresponding tools asmbe.f, ceh.f, csgreh.f, ueh.f and ugreh.f .

CHAPTER 2. CUTE LOG 36

Changes to tools In October 1994, the constrained tools were updated to make them more efficient for
unconstrained problems. On most unconstrained problems, these changes will make a small (not dramatic)
difference in solution time.

Changes to scripts Linking compiled, library versions of BLAS (Basic Linear Algebra Subprograms)

The linking of compiled, library versions of the BLAS is now permitted by all scripts which use the BLAS
(bqp.*, cns.*, lmq.*, mns.*, nps.*, osl.*, qp.* ten.*, and unc.*), and the generic script gen.*, EXCEPT for
the .vax scripts.

If there are library versions of the level-1 BLAS available, the variable BLAS in these scripts should be
set to a list of names of the object library suffix -lx, where the object library libx.a contains the relevant
BLAS. For example, if the BLAS are shared between object libraries libblas1.a and libblas2.a, the variable
BLAS should be set to ”-lblas1 -lblas2”, noting that those subprograms in libblas1.a will take precedence
over those in libblas2.a.

If compiled BLAS are not available, the variable BLAS should be set to ””. (This is the default setting.)
In this case, the link statement includes linpac.o, which is the compiled object for the Fortran source file
linpac.f provided in the CUTE distribution.

Linking compiled, library versions of HSL (Harwell Subroutine Library) The linking of compiled,
library versions of HSL is now permitted by all scripts which link subroutines from HSL (bqp.*, cns.*,
lmq.*, and qp.*), EXCEPT for the .vax scripts.

If there is a library version of the HSL available, the variable HSL in these scripts should be set to -lx,
where the object library libx.a contains the relevant HSL. For example, if HSL is contained in the object
library libhsl.a, the variable HSL should be set to ”-lhsl”.

If a compiled version of HSL is not available, the variable HSL should be set to ””. (This is the default
setting.) In this case, the link statement includes the name of the appropriate object file for the optimization
package in question. For example, if the variable HSL is set to ”” in bqp.*, the link statement includes
$CUTEDIR/qp/ve14s.o for single precision, or $CUTEDIR/qp/ve14d.o for double precision. (The names
of the appropriate object files are given in the section entitled ”Running the scripts available within CUTE”
in the file $CUTEDIR/READ.ME. Before installation, this READ.ME is entitled README.mcn, where
mcn is the three-letter extension for your platform.)

2.1.2 Bug fixes since November 93

30/Nov/93: gps.f — Correction 1. 3 lines interchanged.

03/Dec/93: mi54ma.f — Correction 10. increased NWCORE for small and medium installations.

03/Dec/93: MINOS.sml, MINOS.med, MINOS.lrg Removed line setting Crash Option to 0. Now Crash
Option defaults to 3.

03/Dec/93: README.minos — Added a few lines to indicate that DEC VAX/VMS users should use
mi10vms.f, not mi10unix.f, to create the MINOS 5.4 object module.

13/Jan/94: makefn.f, makegr.f — Two lines modified for correcting a format problem in conditional
expressions (ELEMENTS and GROUPS sections).

CHAPTER 2. CUTE LOG 37

13/Jan/94: classify.osf classall.osf — The scripts are updated to avoid problems with echo.

20/Jan/94: genma.f, gend.f, gens.f — Converted these files to upper case and added a dummy argument
in the call to gen.

21/Jan/94: cns.* (formerly con.*), sdcns.* (formerly sdcon.*), paper.tex, README.cry, README.dec,
README.install, README.osf, README.rs6, README.sun, README.vax — Renamed con.*
to cns.* to allow CUTE to run under DOS. Also renamed sdcon.* to sdcns.* for consistency.

21/Jan/94: select.* — Removed extraneous basic system commands.

21/Jan/94: slct.f — Removed translation of file name FILEN to upper case. This change allows the user
to specify a full path name for the .DB file, and thus the .DB file need not necessarily reside in
$MASTSIF.

21/Feb/94: ccfg.f, cdh.f, cfn.f, cgr.f, cgrdh.f, cnames.f, cofg.f, cprod.f, cscfg.f, csetup.f, csgr.f, csgrsh.f,
csh.f, ubandh.f, udh.f, ufn.f, ugr.f, ugrdh.f, ugrsh.f, unames.f, uofg.f, uprod.f, usetup.f, ush.f,
README.tools — Replaced sized array declarations with declarations using parameters. This
change means that these arrays can be resized by changing only the parameter value, without chang-
ing the array declaration itself.

25/Apr/94: ubandh.f — Declared previously undefined variable NNZH as integer.

25/Apr/94: va15ma.f — Declared previously undefined variables MAXIT, LP, MP, INFO as integer.

02/May/94: README.cry, README.dec, README.install, README.osf, README.rs6,
README.sun, README.vax — Removed HS25.SIF from documentation, since it is no longer
included in CUTE as a test problem.

04/May/94: specs, README.tools, README.depend — Renamed former README.tools to
README.depend and renamed former specs to README.tools, to have the names better reflect
the contents of these documentation files.

04/May/94: unfold.* — Added line to move README.depend to $CUTEDIR/doc/depend.rdm.

10/May/94: csetup.f — Added OUTPUT common block to SAVE statement.

10/May/94: sd*.*, bqp.*, cns.*, gen.*, lmq.*, mns.*, nps.*, osl.*, qp.*, ten.*, unc.*, except *.vax scripts
— Added check for installation of requested precision (single or double), to make the failure more
graceful when the user tries to run a precision which has not been installed. If the requested preci-
sion is not installed, each script writes an error message and terminates.

11/May/94: select.*, slct.f — select.* scripts now create SLCT.DAT file containing the setting of $MAST-
SIF, in order that the slct program can give the full path name for the default classification file.

12/May/94: select.* — Removed cd to $MASTSIF since creation of SLCT.DAT means it is no longer
necessary to initiate slct from $MASTSIF.

12/May/94: unfold.* — Added line to remove sysdp*.* files. These are system dependent files required
to install CUTE on some platforms.

12/May/94: *ma.f, clsf.f, local.f, runsd.f, slct.f — Added machine-dependent lines for WATCOM Fortran
installations. All these lines begin with CWFC.

CHAPTER 2. CUTE LOG 38

12/May/94: *.wfc —

13/May/94: Added batch files to run CUTE under DOS with WATCOM Fortran compiler.

25/May/94: asmbl.f — Fixed error in the calculation of the Hessian which arose when the same problem
variable was assigned to two or more elemental variables.

27/May/94: sd*.vax, bqp.vax, cns.vax, gen.vax, lmq.vax, mns.vax, nps.vax, qp.vax, ten.vax, unc.vax —
Added check for installation of requested precision (single or double), to make the failure more
graceful when the user tries to run a precision which has not been installed. If the requested preci-
sion is not installed, each script writes an error message and terminates.

31/May/94: mi53ma.f, mi54ma.f, npsma.f, oslma.f, vf13ma.f — Replaced UNIX machine-dependent
OPEN statements for OUTSDIF.d with generic UNIX OPEN statements.

31/May/94: *.hp — Added scripts to run CUTE on HP9000 workstations under HP-UX.

02/Jun/94: unfold.* — Changed (for the sake of DOS) to handle postfixes in filenames limited to 3 chars.

03/Jun/94: local.f — Added machine-dependent lines for HP installations. All these lines begin with
CHP.

12/Jul/94: local.f — Added machine-dependent lines for Silicon Graphics installations. All these lines
begin with CSGI.

18/Jul/94: initw.f —

25/Jul/94: gen.*, mns.*, nps.*, ten.*, unc.* — Added check for existence of required object file.

25/Jul/94: bqp.*, cns.*, lmq.*, qp.*, unfold.*, paper.tex, README.cry, README.dec, README.hp,
README.install, README.osf, README.rs6, README.sun, README.vax, README.wfc —
Reorganized directories for Harwell subroutine executables. Now each Harwell optimization sub-
routine included in CUTE has its own directory, with the same name as the subroutine (i.e., va15,
ve09, ve14, vf13). Users linking compiled objects corresponding to the Harwell subroutines should
place these objects in the corresponding directories. Users linking the Harwell subroutine library
are unaffected by this change.

26/Jul/94: instll.* — Added check that unwrap has taken place before execution of instll procedure.

26/Jul/94: gen.vax — Removed erroneous blank in line setting ctools.

26/Jul/94: classall.cry, classall.dec, classall.hp, classall.osf, classall.rs6, classall.sun, classall.vax —
Added check for existence of CLASSF.DB before removing it.

26/Jul/94: classall.wfc — Added line to type final classf.db file.

26/Jul/94: classify.wfc — Replaced block of lines to prevent failure when the specified directory is the
current one.

26/Jul/94: sysdp1.wfc (renamed by unfold.wfc to classone.wfc) — Replaced block of lines to prevent
failure when classf.udb does not exist.

CHAPTER 2. CUTE LOG 39

26/Jul/94: classify.cry, classify.dec, classify.hp, classify.osf, classify.rs6, classify.sun, classify.vax —
Added check for existence of CLASSF.UDB before moving it to CLASSF.DB.

27/Jul/94: sdgen.vax — Replaced ’purge’ with ’purge/nolog’ on three lines.

27/Jul/94: slct.f — Changed matching for fixed number of variables or constraints. A variable number
(’V’ in the classification string) is no longer considered to match a fixed number. Also fixed the
initialization of FILEN for non-Unix platforms.

27/Jul/94: tenma.f, uncma.f, va15ma.f, ve09ma.f, ve14ma.f — Deleted CIBM lines, since CUTE does
not support installations under VM/CMS.

27/Jul/94: README.install — Added CWFC and CHP to keywords table. Also explained presence of
CIBM in local.f and runsd.f.

02/Aug/94: slct.f — Changed matching for number of variables or constraints in an interval. A variable
number (’V’ in the classification string) is no longer considered to match a number in an interval.

05/Aug/94: osl.* — Added check for existence of executable after link and load statement. If the ex-
ecutable does not exist, the error message reminds the user to ensure that FLIBS points to the
Optimization Subroutine Library.

05/Aug/94: bqp.*, cns.*, lmq.*, qp.* — Added check for existence of required object file. If the object
file does not exist, the error message states that either the object file must be placed in the appropriate
directory, or HSL must point to the user’s Harwell Subroutine Library.

08/Aug/94: README.install — Made changes to reflect recent changes to CUTE package.

23/Aug/94: MINOS.lrg, MINOS.med, MINOS.sml Replaced line setting ’Superbasics Limit’ with line
setting ’Hessian Dimension’.

24/Aug/94: README.*, maketo.*, mns.*, sdmns.*, unfold.* — Changed mi54*.* to minos*.*, since
the scripts and tools for MINOS 5.4 work without modification for MINOS 5.5, and these are now
the standard versions of MINOS. Also explicitly added MINOS 5.5 to README.minos.

12/Sep/94: osl.cry, osl.hp, osl.rs6, osl.sun — Moved stanza setting FLIBS to follow stanza setting BLAS,
and expanded comment in this stanza. Also deleted space between ’-l’ and ’$FLIBS’ in link com-
mands.

14/Sep/94: ccfg.f — Fixed bug in Jacobian calcuation for groups with only linear elements.

15/Sep/94: cofg.f, ccfg.f, cscfg.f — Removed incorrect storage of nonzero entries in FUVALS(LGRJAC
) and updating of indices in IWK(LSTAJC). This error did not affect the output of these routines,
but would affect other routines using these arrays. Also removed setting of FIRSTG to .FALSE.

04/Oct/94: ccifg.f, cscifg.f — Added new tools to evaluate the function and possibly the gradient of a
single constraint, in both dense and sparse formats.

04/Oct/94: README.*, gen.*, maketo.*, unfold.* — Added ccifg.f and cscifg.f as appropriate.

05/Oct/94: csetup.f, usetup.f — Rearranged variable declarations to separate common and local vari-
ables.

CHAPTER 2. CUTE LOG 40

05/Oct/94: ccfg.f, cdh.f, cfn.f, cgr.f, cgrdh.f, cnames.f, cofg.f, cprod.f, cscfg.f, csetup.f, csgr.f, csgrsh.f,
csh.f — Changed constrained tools to make them more efficient for unconstrained problems.

05/Jan/95: SAMPLE.SIF — renamed sifcmd.lst to avoid the confusion with SIF files describing actual
problems. Suitable modifications in the README.* and in unfold.*.

2.2 CUTE version 2.0

This version of CUTE corresponds to the paper published in TOMS. It incorporates all changes, correc-
tions and updates described above for CUTE 1.0 and updates.

2.2.1 Updates since January 1995

06/01/95: Output printing improved for vf13ma.f

22/01/95: Output printing improved for cobma.f

20/08/98: Additional tools cidh.f and cish.f, which compute the Hessians of individual problem functions
(objective or constraints) in dense and sparse formats respectively, added.

17/05/99: Output printing improved for ush.f, ugrsh.f, csh.f, cish.f and csgrsh.f

25/08/99: redundant format statements removed from usetup.f, csetup.f, vf13ma.f, minosma.f, oslma.f,
cobma.f and uncmai.f

25/08/99: tabs removed from cofg.f, ccfg.f and cscfg.f

2.2.2 Bug fixes since January 1995

15/08/95: Error message and output format improvements in makefn.f and makegr.f

24/10/95: Dummy array dimension corrected in call to SETVL in asmbe.f

20/03/96: Order of two statements changed in asmbl.f and asmbe.f

16/01/97: KA properly initialized in minosma.f and mi53ma.f

06/02/97: IOBJ properly initialized in minosma.f and mi53ma.f

25/04/97: checks for space allocation fro the Jacobian in csgr.f and minosma.f

19/08/97: The Hessian sparsity pattern no longer depends on the values of the problem unknowns and La-
grange multipliers, but just on the structure of the problem. This implies that, for certain argument
values, zero entries will occur where previously there would have been no entry. The advantage of
a fixed pattern is that this simplifies the job for users of sparse-matrix solvers which often presume
that this is the case.

27/08/99: Length of arrays IPRNHI and IPRHI properly checked in asmbe.f, ueh.f, ugreh.f, ceh.f and
csgreh.f

CHAPTER 2. CUTE LOG 41

2.3 CUTE version 2.99999

This version adds a number of new tools in anticipation of CUTEr, which is due for release in 2001. It
incorporates all changes, corrections and updates described above for CUTE 2.0 and updates.

2.3.1 Major additions

New routines

- UDIMEN, UDIMSH, UDIMSE, CDIMEN, CDIMSH, CDIMSE, CDIMSJ to determine ap-
propriate array dimensions in advance

- UVARTY, CVARTY to detect integer/zero-one variables

SIF Extension to SIF format to allow users to specify explicit quadratic terms for the objective function;
these extensions have been made by others to the MPS format to handle quadratic programs.

21/02/00: Now a non-fatal return when the SIF file is missing or incomplete. Also, added OSL-like alias
QSECTION for QUADRATIC card.

06/03/00: Increased integer formats from I6 to I8. Increased filename format in slct.f from 39 to 256.
Improved workspace partitions. Fixed bug introduced re: added OSL-like alias QSECTION on
21/02/00.

07/09/00: Checks added to ensure that the range transormation is ”useful”.

Chapter 3

Future versions of CUTEr

3.1 Future features

• GUI,

• Have all the memory allocated in one place at the beginning. This would require further versions
(like CUTEst) to be written in Fortran95, Fortran2000, or similar,

• AMPL to SIF converter (maybe not)

• GAMS to SIF converter (even less likely)

• C interfaces (aaargh),

• Support for Windows (double aaargh)

42

Chapter 4

License

Copyright (C) the Council for the Central Laboratory of the Research Councils, CERFACS and Facultes
Universitaires Notre-Dame de la Paix (CCLRC, CERFACS and FUNDP) 2001.

SOFTWARE LICENSE AGREEMENT NOTICE - THIS SOFTWARE IS BEING PROVIDED TO YOU
BY CERFACS UNDER THE FOLLOWING LICENSE. BY DOWN-LOADING, INSTALLING AND/OR
USING THE SOFTWARE YOU AGREE THAT YOU HAVE READ, UNDERSTOOD AND WILL
COMPLY WITH THESE FOLLOWING TERMS AND CONDITIONS.

1. This software program provided in source code format (the ”Source Code”) and any associated
documentation (the ”Documentation”) are licensed, not sold, to you.

2. CCLRC, CERFACS and FUNDP grant you a personal, non-exclusive, non-transferable and royalty-
free right to use, copy or modify the Source Code and Documentation, provided that you agree
to comply with the terms and restrictions of this agreement. You may modify the Source Code
and Documentation to make source code derivative works, object code derivative works and/or
documentation derivative works (called ”Derivative Works”). The Source Code, Documentation
and Derivative Works (called ”Licensed Software”) may be used by you for personal and non-
commercial use only. ”non-commercial use” means uses that are not or will not result in the sale,
lease or rental of the Licensed Software and/or the use of the Licensed Software in any commercial
product or service. CCLRC, CERFACS and FUNDP reserve all rights not expressly granted to you.
No other licenses are granted or implied.

3. The Source Code and Documentation are and will remain the sole property of CCLRC, CERFACS
and FUNDP. The Source Code and Documentation are copyrighted works. You agree to treat any
modification or derivative work of the Licensed Software as if it were part of the Licensed Software
itself. In return for this license, you grant CCLRC, CERFACS and FUNDP a non-exclusive per-
petual paid-up royalty-free license to make, sell, have made, copy, distribute and make derivative
works of any modification or derivative work you make of the Licensed Software.

4. The licensee shall acknowledge the contribution of the Source Code in any publication of material
dependent upon the use of the Source Code. The licensee shall use reasonable endeavours to send
to CCLRC, CERFACS and FUNDP a copy of each such publication.
For CCLRC, contact n.gould@rl.ac.uk, for CERFACS, contact orban@cerfacs.fr and for FUNDP,
contact Philippe.Toint@fundp.ac.be.

43

CHAPTER 4. LICENSE 44

5. CCLRC, CERFACS and FUNDP have no obligation to support the Licensed Software it is providing
under this license.

THE LICENSED SOFTWARE IS PROVIDED ”AS IS” AND CCLRC, CERFACS and FUNDP
MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, CERFACS MAKE NO REPRESENTATIONS OR WAR-
RANTIES OF MERCHANTIBILY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT
THE USE OF THE LICENSED SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE
ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. CCLRC,
CERFACS, FUNDP AND THE AUTHORS OF THE LICENSED SOFTWARE WILL NOT BE
LIABLE FOR ANY CONSEQUENTIAL, INCIDENTAL, OR SPECIAL DAMAGES, OR ANY
OTHER RELIEF, OR FOR ANY CLAIM BY ANY THIRD PARTY, ARISING FROM YOUR
USE OF THE LICENSED SOFTWARE.

6. This license is effective until terminated. You may terminate this license at any time by destroying
the Licensed Software.

Acknowledgements

Phil Gill for Snopt, Jorge Nocedal and Richard Waltz for KNITRO. Sven Leyffer for the interface to
FilterSQP.

Appendix

Environment variables

The environment variables described in Table 4.1 are vital to CUTEr. Refer to your local documentation
or system administrator for more information on how to set these environment variables.

Name Purpose

CUTER Location of the source of the CUTEr package;
MYCUTER Location of the local instance of CUTEr;
SIFDEC Location of the source of the SifDec package;
MYSIFDEC Location of the local instance of SifDec;
MASTSIF Location of the local collection of SIF problems;

Table 4.1: Environment variables vital to CUTEr.

46

	Installation and usage
	Installing and managing CUTEr
	install_cuter
	update_cuter
	uninstall_cuter
	Rebuilding CUTEr

	The CUTEr tree
	Interfacing CUTEr and Matlab(R)
	MEX-Files basics
	CUTEr and MEX-Files
	Using CUTEr from within Matlab
	Adding a new tool

	User-modifiable parts
	CUTEr tools
	CUTEr sizes
	tools sizes
	Sizes for the MATLAB interface tools
	Rebuilding CUTEr

	Driver programs
	The SIF decoder
	Where is the SIF decoder?
	SIF decoder sizes
	CUTEr and automatic differentiation

	Interfaces
	Creating a new interface for an optimization package
	General procedure for Fortran and C interfaces
	Interfacing packages written in C: cuter.h

	Checking the integrity of a SIF file
	Attempting installation on an unsupported architecture

	CUTE log
	CUTE 1.0
	Updates since March 93
	Bug fixes since November 93

	CUTE version 2.0
	Updates since January 1995
	Bug fixes since January 1995

	CUTE version 2.99999
	Major additions

	Future versions of CUTEr
	Future features

	License

