
Cerfacs Technical Report No. TR/PA/01/04

Nicholas I. M. Gould, Dominique Orban and Philippe L. Toint

CUTEr (and SifDec), a Constrained and

Unconstrained Testing Environment, revisited?

Abstract. The initial release of CUTE, a widely used testing environment for opti-
mization software was described in [2]. The latest version, now known as CUTEr is
presented. New features include reorganisation of the environment to allow simultane-
ous multi-platform installation, new tools for, and interfaces to, optimization packages,
and a considerably simplified and entirely automated installation procedure for unix

systems. The SIF decoder, which used to be a part of CUTE, has become a separate
tool, easily callable by various packages. It features simple extensions to the SIF test
problem format and the generation of files suited to automatic differentiation packages.

Key words. Nonlinear constrained optimization, testing environment, shared
filesystems, heterogeneous environment, SIF format

1. Introduction

The CUTE testing environment for optimization software and the associated
test problem collection originated from the need to perform extensive and doc-
umented testing on the LANCELOT package [9]. Because the large set of test
problems and testing facilities produced in this context were useful in their own
right, they were extended to provide easy interfaces with other commonly used
optimization packages, gathered in a coherent multi-platform framework and
made available, on the world wide web and via anonymous ftp, to the research
community. The paper [2] provides an overview of the environment, and full
documentation of the available tools and interfaces at the time.

Since 1993, the CUTE environment and test problems have been widely used
by the community of optimization software developers [1,3,4,6,7,10,11,12,13,
14,21,23,25,26,27,31,32,36,37,38,39,40,41,42]. However, such widespread use
has inevitably lead to a clearer awareness of the deficiencies of the original
design, and also created a demand for new tools and new interfaces. The envi-
ronment has evolved over time by the addition of new test problems and minor
updates to a number of tools. The present paper aims to describe its next ma-
jor evolution: CUTEr, in which we revisit the original CUTE design. This new
release is characterized by

N. I. M. Gould: Rutherford Appleton Laboratory, Computational Science and Engineering
Departement, Chilton, Oxfordshire, England. e-mail: n.gould@rl.ac.uk

D. Orban: cerfacs, 42 Avenue Gaspard Coriolis, 31057 Toulouse Cedex 1, France. e-mail:
Dominique.Orban@cerfacs.fr

Ph. L. Toint: Facultés Universitaires Notre-Dame de la Paix, 61, rue de Bruxelles, B-5000
Namur, Belgium. e-mail: Philippe.Toint@fundp.ac.be

? This work was supported by the MNRT Grant for joint Ph.D. Support.

2 Nicholas I. M. Gould, Dominique Orban and Philippe L. Toint

– a set of new tools, including a unified facility to report the performance of
the various optimization packages being tested,

– a set of new interfaces to additional optimization packages, and
– some fortran 90/95 support.

The SIF optimization test-problem decoder, which used to be a constitutent
part of the CUTE environment, has been isolated into a separate package named
SifDec. Any software which could require the decoding of a SIF file may now
rely on it, as a package in its own right. It is characterized by

– the definition and support of an extension to SIF (the Standard Input For-
mat) allowing for easier input of quadratic programs and for casting the
problem against a selection of parameters, such as the problem size, and

– the ability to generate input files suited to automatic differentiation tools,
such as the HSL [29] AD01 and AD02 packages [35].

Both CUTEr and SifDec have the following features:

– Completely new organization of the various files that make up the environ-
ment, now allowing concurrent installations on a single machine and shared
installations on a network, and

– a new simplified and automated installation procedure, but
– the restriction of the environment to unix systems.

The last of these items is the reason why the rest of the paper uniquely considers
directory structures and/or file names in a style typically found on unix systems.
To some, the restriction to unix systems might seem a retrograde step since
CUTE offered VMS and some DOS support, but this merely reflects our current
expertise.

The paper is intended to supersede the parts of [2] that are obsolete in
CUTEr, to complement it in order to cover the new features and to describe
the new SifDec environment. It is organized as follows. Section 2 discusses the
new organization of the CUTEr environment files. Section 3 then documents
the new tools, Section 4 the new interfaces to additional optimization packages,
Section 5 covers the isolated SIF decoder environment, the extension of SIF

description language to quadratic programs, and its support of user-changeable
parameters. Section 6 describes the new installation procedures. Details of how
the packages may be obtained are given in Section 7, and concluding comments
are presented in Section 8.

2. A new flexible organization

One of the defects of CUTE is that it was not designed to simultaneously sup-
port a multi-platform environment, that is instances of the environment that
could be used simultaneously from a central server on several (possibly differ-
ent) machines (with their own dialects of unix) at the same time. Moreover,
using CUTE on a single machine in conjunction with several different compilers
(a case that frequently occurs when testing new software) is extremely cumber-
some. Likewise, handling different instance of the environment corresponding
to different sizes of the tools (that is the size of the test problems that they
can handle) is problematic. The reason for these difficulties is that the structure
of the CUTE files, as described in [2], does not lend itself to such use, since it

The CUTEr environment 3

only contains a single subtree of objects files. If we call the combination of a
machine, operating system, compiler and size of the tools an architecture, the
obvious solution to such a defect is then to allow several such subtrees in the
installation, one for each architecture used.

However, as soon as the possibility of using architecture-dependent subtrees
is raised, the proper identification of the parts (scripts, programs) of the envi-
ronment that are independent of the architecture also becomes an issue. Since it
would be inefficient to store copies of these independent scripts and programs in
each subtree, it is natural to store them in a data structure which is itself disjoint
from the dependent subtrees. Finally, the multiplication of subtrees containing
sometimes very similar yet vitally different data makes the maintenance of the
environment substantially more complicated, and therefore requires enhanced
tools and a clear distinction between the parts of the environment that are re-
lated to testing optimization software and those related to its own maintenance.

The directory organization chosen for CUTEr, shown in Figure 2.1, reflects
these preoccupations. We now briefly describe its components.

Starting from the top of the figure, the first subtree under the main $CUTER

directory (the root of the CUTEr environment) is build, which essentially con-
tains all the files necessary for installation and maintenance. Its arch subdi-
rectory contains the files defining all possible architectures that are currently
supported by CUTEr, allowing users to install new architecture-dependent sub-
trees as they are required, depending on the testing needs and the evolution of
platforms, systems and compilers. The prototypes subdirectory contains the
parts of the environment which have to be specialized to one architecture before
they can be used. We call such files prototypes and the process of specializing
them to a specific architecture casting. The prototype files include a number of
tools and scripts whose final form typically depends on compiler options and the
chosen size of the tools. Finally, the remaining subdirectory of build, named
scripts, contains the environment maintenance tools and various documenta-
tion files.

The second subtree under $CUTER is called common and contains the environ-
ment data files that are relevant for the purpose of testing optimization packages,
but are independent of the architecture. Its first subdirectory, doc, contains a
number of documentation files concerning the environment (such as a descrip-
tion of its structure and the description of procedure to follow for interfacing the
supported optimization packages), but not a description of the CUTEr tools and
scripts themselves. These are documented in the man subdirectory (and, as is
common on unix systems, its man1 and man3 subdirectories). The src subdirec-
tory contains a number of subdirectories that contain the source files for many
of the environment utilities: tools contains the sources of the Fortran tools used
in user’s programs, while matlab contains all the “m-files” that provide a MAT-
LAB interface to the environment, and pkg holds information related to the
various optimization packages for which CUTEr provides an interface—the pkg

subdirectory itself contains a number of subdirectories, one for each supported
package (we have represented those for the COBYLA and HSL VE12 packages),
typically including an algorithmic specification file and a suitable README
description of how to build an interface between CUTEr and the package. The
last subdirectory of common, sif, contains a few test problems in SIF format.

The next subdirectory under $CUTER is called config and contains all the
configuration and rules files which are relevant to imake, which are needed when

4 Nicholas I. M. Gould, Dominique Orban and Philippe L. Toint

$CUTER

..

.

build

arch

prototypes

scripts

common

doc

man
man1

man3

src

tools

matlab

sif

pkg

cobyla

...

hsl ve12

config

log

$MYCUTER

for a given
machine/
op. system/
compiler/
size

bin

single

bin

lib

config

specs

double

bin

lib

config

specs

Fig. 2.1. Structure of the CUTEr directories

the latter is used to bootstrap the various Imakefiles in order to create the nec-
essary Makefiles.

The log subdirectory of $CUTER contains a log of the various installations
(and, possibly, subsequent un-installations) of the environment for the various
architectures.

The remaining subdirectories of $CUTER are all architecture dependent: each
corresponds to the installation of CUTEr on a specific machine, for a given oper-

The CUTEr environment 5

ating system and compiler and for a given tool size. The figure only represents
one, but the continuation dots at the bottom of the leftmost vertical line indi-
cate that there might be more than one. Although these directories have been
symbolically represented as subdirectories of $CUTER on the figure, to reflect
their dependence upon $CUTER, they may be located anywhere on the host sys-
tem, including on remote machines over the local network. The name of these
directories are (by default) automatically chosen at installation, but a user of
one of these subtrees would typically give it a symbolic name, like $MYCUTER, to
distinguish the version of CUTEr currently in use. Each architecture-dependent
subtree is divided into its single precison and double precision instances (single
and double, respectively), each of these containing in turn four subdirectories.
The first, bin, contains the object files corresponding to the driving programs
for the optimization packages and, if relevant, of the package codes themselves.
It should also contain the Fortran 90/95 module information files, if applicable
(usually called *.mod files). The second, lib, contains the library of CUTEr tools
and, if relevant, any object libraries associated with the interfaced optimization
packages. The config subdirectory contains the architecture-dependent files
that were used to build the current $MYCUTER subtree (they are reused when
a tool or optimization package is added or updated), while specs contains the
algorithmic specification files for the optimization packages that are architec-
ture dependent, if any. Finally, $MYCUTER/bin contains those scripts which are
architecture, but not precision, -dependent.

The fact that the CUTEr tools are now stored in the form of libraries (while
they were stored as a collection of individual object files in CUTE), is another
novel feature. This allows a much simpler design of new optimization package
interfaces, since the interface no longer needs specify the exact list of tools which
need to be loaded together with the package.

A final new feature of the environment organization is that the documen-
tation is available via the usual man command for the scripts and tools, and in
ascii, postscript and pdf formats for the rest. It is hoped that this will make
access to the relevant information more convenient for users.

3. New tools

CUTEr tools for unconstrained and constrained optimization are presented in
Table 3.1 and Table 3.2 respectively, accompanied by a brief description. When-
ever the description states that the Hessian matrix of either the objective or
the Lagrangian function is in sparse format, it is implicitly understood that it
is stored in coordinate format [16, §2.6]; explicit mention is made whenever this
matrix is instead stored in finite-element format. Besides the general CUTEr doc-
umentation, man pages describing all supplied tools and their calling sequence
are included in the distribution.

Users of the previous versions of CUTE will notice a number of new tools,
both for unconstrained (or bound-constrained) and constrained problems. We
note the uvarty and cvarty tools, whose purpose is to determine the type of
each variable, which may be continuous, binary (0-1) or integer. For constrained
problems, the tool cdimen determines the number of variables and constraints
involved. The tools cdimse and cdimsh determine the number of nonzero entries
in the Hessian of the Lagrangian when using (respectively) finite-element or gen-

6 Nicholas I. M. Gould, Dominique Orban and Philippe L. Toint

eral sparse matrix storage, and thus allow users to set appropriate array sizes
in advance, while cdimsj does the same for the constraint Jacobian. The tool
cscifg is now obsolete and replaced by ccifsg. For backward-compatibility
reasons, the former is included but simply calls the latter as a subroutine. Pro-
grams that ran under earlier versions of CUTE will therefore still run under
CUTEr. Similarly, for unconstrained problems, the new tools udimen udimse

and udimsh determine the number of variables involved, and the numbers of
nonzeros in the Hessian if finite-element and sparse formats respectively. Fi-
nally, the ureprt and creprt tools produce statistics about a particular run on
(respectively) an unconstrained or constrained test problem, reporting data such
as total CPU time, number of iterations, function and constraints evaluations
(if appropriate), number of evaluations of their derivatives, and the number of
Hessian matrix-vector products used.

All the external package drivers supplied report data using the ureprt and
creprt tools. These drivers have filenames matching the *ma.f or *ma.f90

expression. They may be found in $CUTER/common/src/tools before compila-
tion and under the name $MYCUTER/precision/bin/*ma.o after compilation. The
corresponding package source, for example, pak.f (which is not supplied with
CUTEr) needs to be compiled (but not linked) to $MYCUTER/precision/bin/pak.o.
All the object files and the relevant libraries are subsequently linked by the cor-
responding interface, following the procedure described in §4.

4. New interfaces

CUTEr contains a number of additional interfaces to existing packages (as well
as interfaces to newer versions of previously supported packages) beyond those

Tool name Brief description

ubandh extract a banded matrix out of the Hessian matrix
udh evaluate the Hessian matrix in dense format
udimen get the number of variables involved
udimse determine the number of nonzeros required to store the

sparse Hessian matrix in finite-element format
udimsh same as udimse, in sparse format
ueh evaluate the sparse Hessian matrix in finite-element format
ufn evaluate function value
ugr evaluate gradient
ugrdh evaluate the gradient and Hessian matrix in dense format
ugreh evaluate the gradient and Hessian matrix in finite-element format
ugrsh evaluate the gradient and Hessian matrix in sparse format
unames obtain the names of the problem and its variables
uofg evaluate function value and possibly gradient
uprod form the matrix-vector product of a vector with the Hessian matrix
usetup set up the data structures for unconstrained optimization
ush evaluate the sparse Hessian matrix
uvarty determine the type of each variable
ureprt obtain statistics concerning function evaluation and CPU time used

Table 3.1. The unconstrained optimization CUTEr tools.

The CUTEr environment 7

Tool name Brief description

ccfg evaluate constraint functions values and possibly gradients
ccfsg same as ccfg, in sparse format
ccifg evaluate a single constraint function value and possibly gradient
ccifsg same as ccifg, in sparse format
cdh evaluate the Hessian of the Lagrangian in dense format
cdimen get the number of variables and constraints involved
cdimse determine number of nonzeros to store the Lagrangian Hessian

in finite-element format
cdimsh determine number of nonzeros to store the Lagrangian Hessian

in coordinate format
cdimsj determine number of nonzeros to store the matrix of gradients of

the objective function and constraints, in sparse format
ceh evaluate the sparse Lagrangian Hessian in finite-element format
cfn evaluate function and constraints values
cgr evaluate constraints gradients and objective/Lagrangian gradient
cgrdh same as cgr, plus Lagrangian Hessian in dense format
cidh evaluate the Hessian of a problem function
cish same as cidh, in sparse format
cnames obtain the names of the problem and its variables
cofg evaluate function value and possibly gradient
cprod form the matrix-vector product of a vector with the

Lagrangian Hessian
cscfg evaluate constraint functions values and possibly gradients in sparse

format
cscifg same as cscfg, for a single constraint
csetup set up the data structures for constrained optimization
csgr evaluate constraints and objective/Lagrangian function gradients
csgreh evaluate both the constraint gradients, the Lagrangian Hessian

in finite-element format and the gradient of the
objective/Lagrangian in sparse format

csgrsh same as csgreh, in sparse format instead of finite-element format
csh evaluate the Hessian of the Lagrangian, in sparse format
cvarty determine the type of each variable
creprt obtain statistics concerning function evaluation and CPU time used

Table 3.2. The constrained optimization CUTEr tools.

offered with CUTE. The purpose of providing these interfaces is to allow re-
searchers and practitioners to run a variety of solvers on a consistent set of test
examples, and thus to assess which algorithm is likely to be the most suitable
for solving classes of related problems. The newly supported packages are:

Praxis. Praxis is Chandler’s implementation of Brent’s algorithms for min-
imization without derivatives. It is available from John Chandler, Com-
puter Science Department, Oklahoma State University, Stillwater, Okla-
homa 74078, USA (jpc@a.cs.okstate.edu).

L-BFGS-B. This package is for unconstrained or bound constrained problems,
and uses a limited memory BFGS quasi-Newton update. The package L-
BFGS-B [43] is available from Jorge Nocedal, ECE department, Nothwestern
University, Evanston IL 60208-3118, USA (nocedal@ece.northwestern.edu).

8 Nicholas I. M. Gould, Dominique Orban and Philippe L. Toint

SNOPT. CUTEr interfaces the latest version, SNOPT 6.1 [24]. SNOPT mini-
mizes a (smooth) linear or nonlinear function subject to bounds and sparse
linear or nonlinear constraints using sequential quadratic programming. The
package may be obtained from Philip Gill (pgill@ucsd.edu).

KNITRO. KNITRO minimizes a smooth nonlinear function subject to non-
linear equality and inequality constraints using an interior-point approach.
The resulting barrier subproblems are treated using sequential quadratic
programming. The KNITRO software [5] is maintained by Jorge Nocedal
(nocedal@ece.northwestern.edu) and Richard Waltz
(rwaltz@ece.northwestern.edu).

filterSQP. This nonlinear programming package uses the recent-proposed fil-
ter idea [20,21,22], is globalized with a trust region and solves a quadratic
programming subproblem at each iteration. The filterSQP package is main-
tained by Roger Fletcher (fletcher@maths.dundee.ac.uk) and Sven Leyf-
fer (sven@maths.dundee.ac.uk).

HRB. HRB converts matrices (for example, Hessians, Jacobians, and KKT
augmented system matrices) derived from SIF problem data into Harwell-
Boeing [17,18] or Rutherford-Boeing [19] sparse matrix formats. HRB was
written by Nick Gould, and is unique in CUTEr in that the interface requires
no external package.

HSL VE12. This package finds critical points of nonconvex quadratic pro-
gramming problems using a interior-point trust-region algorithm [8]. HSL VE12

is part of HSL [29] and was written by Nick Gould and Philippe Toint.

The implementation of the interfaces differ slightly from that of past CUTE

releases. If pak is a generic name for an interface, the scripts sdpak and pak

are found under $MYCUTER/bin. The script sdpak applies the SIF decoder (see
Section 5) to an input problem, sets a number of environment variables, col-
lects and compiles source and object files as necessary, links them together and
executes the resulting program. The script pak is similar to sdpak except it
assumes the input problem has already been decoded.

Generic interfacing scripts—sdgen and gen—may also be found in the di-
rectory $MYCUTER/bin, and these serve the purpose of helping users to design
an interface to a new, or currently-unsupported, package. The corresponding
prototype files may be found under the directory $CUTER/build/prototypes.

Besides the general CUTEr documentation, man pages describing all sup-
plied interfaces are included in the distribution. Documentation on the package
pak and on how to compile the related sources may be found under the di-
rectory $CUTER/common/src/pkg/pak. Note however that the supported pack-
ages are not supplied in CUTEr. Object files resulting from the compilation
of these sources should be placed somewhere where CUTEr can find and link
them, for instance in $MYCUTER/precision/bin, where precision is the working
precision. The precision-independent specification file for the package pak are
found under the directory $CUTER/common/src/pkg/pak, whereas if the op-
tions specification files depend on the working precision, they are found under
$MYCUTER/precision/specs.

The CUTEr environment 9

5. An isolated SIF decoder

In this section, we examine the new design of the SIF decoder. In contrast with
earlier version of CUTE [2], the SIF decoder is no longer embedded in CUTEr.
We believe that this may be justified for a number of reasons. Firstly, while the
decoder is used intensively by the CUTEr testing environment, there is no a pri-

ori reason why it shouldn’t also be useful in other contexts. As a prime example,
the SIF decoder plays a vital role in the upcoming package LANCELOT B (an
updated version of the LANCELOT package [9]), from the GALAHAD [28] opti-
mization software library. It is thus more consistent to isolate the decoder and
simply have any dependent packages call it as needed. Another reason for our
decision is ease of maintenance, and consistency when upgrading the decoder—
all the packages which refer to it are then guaranteed to use the same version.
Finally, the SIF decoder may evolve in its own right and develop separately. An
illustration of this fact is that it has recently been extended so as to generate
routines for function evaluation suited for input to the HSL automatic differ-
entiation packages HSL AD01 and its threadsafe counterpart HSL AD02 [29]. The
resulting package containing the isolated decoder has been named SifDec.

5.1. A new design

The design and contents of the SifDec directory tree is very similar to the new
design of CUTEr, described in section 2, reflects similar concerns, and is depicted
in Fig. 5.1. Corresponding environment variables play the corresponding roles;
the root of the tree is called $SIFDEC while the current instance of SifDec is re-
ferred to as $MYSIFDEC. In addition, the doc subdirectory contains the complete
SIF reference document.

5.2. Extensions of the SIF

5.2.1. Quadratic programs A long source of irritation for CUTE users was that
the SIF representation of test problems did not explicitly allow for quadratic
objective functions (although it was obviously possible to represent such function
via the definition of suitable nonlinear element functions). Since this situation
arises frequently (most especially in quadratic programming), and as a number
of similar extensions to the MPS Linear Programming format from which SIF

evolved are in use [30,33,34], we have chosen to extend the original definition
of the SIF format to handle quadratic parts of the objective function in a more
flexible manner. We now briefly describe this extension for the reader already
familiar with the definition of the SIF format as specified in [9]. The terminology
we used is adopted from there.

In [9], the objective function is represented as a group partially separable

function consisting of several potentially nonlinear groups. The purpose of our
extension is to allow, in addition, one of the groups to be specified as a quadratic
objective group, that is a group whose type of nonlinearity is immediately spec-
ified by its definition, without the need to define additional nonlinear group or
element functions. More precisely, the objective function is now assumed to have

10 Nicholas I. M. Gould, Dominique Orban and Philippe L. Toint

$SIFDEC

..

.

build

arch

prototypes

scripts

config

common

man man1

src
select

sifdec

doc

log

$MYSIFDEC for
• machine
• op. system
• compiler
• size

single

bin

bin

config

double
bin

config

Fig. 5.1. Structure of the SifDec directories

the form

f(x) =
∑

i∈IO

gi

∑

j∈Ji

wi,jfj(x̄j) + aT
i x − bi

 + 1

2

n
∑

j=1

n
∑

k=1

hj,kxjxk,

The CUTEr environment 11

where x = (x1, x2, . . . , xn). The additional term 1

2

∑n

j=1

∑n

k=1
hj,kxjxk in the

objective function is the quadratic objective group and constitutes an extension
to the format proposed in [9]; the leading 1

2
is present by convention.

In order to fix the ideas, let us consider the optimization problem

minimize f(x1, x2) = ex2

1 + x2

2 + 4x1x2.

Its objective function then comprises two groups, the first of which (ex2

1) uses
a non-trivial nonlinear group function g(α) = eα. The rest of the objective
function may then be considered as a quadratic objective group, and written as

1

2
(h1,1x1x1 + h1,2x1x2 + h2,1x2x1 + h2,2x2x2),

where h1,1 = 0, h1,2 = h2,1 = 4 and h2,2 = 2.
The quadratic objective group is specified in the SIF file by using an ad-

ditional section starting with the keyword (or indicator card) QUADRATIC (the
cards HESSIAN, QUADS1, QUADOBJ2 and QSECTION3 are treated as synonyms of
QUADRATIC); this section must appear between the START POINT and ELEMENT

TYPE sections (see [9, §7.2.1]).
Within this new section, each line is used to specify at most two values of hi,j

that share a common value of i or j; any hi,j not recorded is assumed to have
the value zero, only one of the pair (hi,j , hj,i), i 6= j, should be given, and any
repeated values will be summed. The syntax for data following these indicator
cards is given in Table 5.1.

<><—10—> <—10—><—-12—-> <—10—> <—-12—->
F.1 Field 2 Field 3 Field 4 Field 5 Field 6

QUADRATIC or
HESSIAN or
QUADS or
QUADOBJ or
QSECTION

varbl-namevarbl-namenumerical-vl varbl-namenumerical-vl
X varbl-namevarbl-namenumerical-vl varbl-namenumerical-vl
Z varbl-namevarbl-name r-p-a-name
↑↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 5 14 15 24 25 36 40 49 50 61

Table 5.1. Possible data cards for HESSIAN, QUADS, QUADOBJ or QSECTION

The strings varbl-name in data fields 2 and 3 (and optionally 2 and 5 for
those cards whose field 1 does not contain Z) give the names of pairs of problem
variables xj and xk for which hj,k is nonzero. All problem variables must have
been previously set in the VARIABLES/COLUMNS section. Additionally, on a Z

card, the name of the variable must be an element of an array of variables, with
a valid name and index, while on a V card, the name may be either a scalar or
an array name.

On cards whose field 1 is either empty or contains the character X, the
strings numerical-vl in data fields 4 and (optionally) 6 contain the associated

1 For compatibility with Ponceleón’s proposal [34].
2 For compatibility with Maros and Meszaros’ test set [33].
3 For compatibility with OSL [30].

12 Nicholas I. M. Gould, Dominique Orban and Philippe L. Toint

numerical values of the coefficients hj,k. On cards for which field 1 contains the
character Z, the string r-p-a-name in data field 5 gives a real parameter array
name. This name must have been previously defined and its associated value
then gives the numerical value of the parameter.

Returning to our example above, and assuming that the variables x1 and x2

are named X1 and X2, the QUADRATIC section for this problem then takes the
form given in Table 5.2.

<><—10—><—10—><—-12—-> <—10—><—-12—->
F.1 Field 2 Field 3 Field 4 Field 5 Field 6
QUADRATIC

X1 X1 2.0 X2 4.0

Table 5.2. The SIF file specification for the example

This extension to the SIF format has resulted in our including the Maros and
Meszaros collection of quadratic programming test problems [33] as an annex
to the main CUTEr collection. The complete test set may be downloaded from
the location http://cuter.rl.ac.uk/cuter-www/mastsif.html.

5.2.2. User-changeable parameters One of the less convenient features of SIF-
encoded problems was that the decoding procedures in CUTE were not designed
to recognise, nor to alter, instance-dependent variable parameters such as prob-
lem dimensions or critical coefficients. Many real models, particularly those that
arise from some form of discretization, depend upon parameters that a user
might wish to refine. With CUTE, a user wishing to change such a parameter
was forced to edit the SIF file—these files were usually provided with a number
of suggested values, all but one of which were “commented out”. Since a number
of users found this to be very inconvenient, SifDec makes provisions both for the
definition and for the altering of variable parameters from the problem-decoding
scripts.

Any real or integer parameter definition containing the comment $-PARAMETER
in field 5 (i.e., in columns 40-50) in a SIF file defines that parameter to be a
variable parameter—this is consistent with old-style SIF-encoded problems since
strings starting with $ in this field were previously treated as comments. Any
characters after $-PARAMETER will be regarded as comments, and will be passed
back to a user on request. All SIF files in the CUTE collection that previously
contained variable parameters have been updated to take advantage of this new
SifDec facility, but of course they are still consistent with CUTE.

Given this extra syntax, the SIF decoding scripts have been extended to
support two new options, allowing users to select variable parameters in the
SIF file. The first of these options, -show, prints all the variable parameters
present in the SIF file, along with suggested values to which they may be set
as well as any other provided comments. The second, -param allows users to
choose, from the command line, which values to assign to these parameters. For
instance, assuming that N and THETA have been marked as variables parameters
of SAMPLE.SIF and that N=400 and THETA=3.5 are valid values, the command

sifdecode -param N=400,THETA=3.5 SAMPLE.SIF

The CUTEr environment 13

(see Section 4 for a discussion of the related script sdpak which also inherits
these features) will decode SAMPLE.SIF into the appropriate subroutines and
data files, setting N to 400 and THETA to 3.5.

These new features allow users to systematically solve a set of problems in
all prescribed, or possible, sizes. Default values are given in each SIF file, and we
have taken the opportunity to raise these defaults to reflect the size of problems
that we feel ought to be of current interest, given that many of the previous
defaults were assigned over ten years ago, and are rather small to challenge
current state-of-the art solvers.

As a possible extension of the -param command-line option, users may force
a problem to be solved using parameter values which have not necessarily been
pre-assigned in the SIF file. This is done using the -force option, as in

sifdecode -param N=1000,THETA=3.5 -force SAMPLE.SIF

where SAMPLE.SIF does not contain the parameter setting N=1000. Omitting the
-force option would result in an abort of the process while specifying it results
in the SIF decoder and the optimizer attempting to complete the solve using the
value 1000 for N. Note that nothing guarantees that this value is valid in that
context, and that the -force command-line option should be used carefully.

6. The new installation procedures

We now describe the procedure to follow to install the CUTEr package. The
complete procedure applies equally for the SifDec package, the only difference
being the names of the procedures invoked, as we mention at the end of this
section.

CUTEr comes in two similar yet fundamentally different flavours. In the first,
the installation, un-installation and update procedures are entirely operated by
shell scripts. The second implements the obvious solution offered by Makefiles.
We now describe each in turn, starting with the script-based version of CUTEr.

Installation is performed by the script install script cuterwhich prompts
for information on the local architecture and environment and the desired com-
piler. Basic system commands and definition of a temporary directory are stored
in files called system.os in the directory $CUTER/build/arch, where ‘os’ stands
for the local operating system. If necessary, some or all of these files may need to
be properly modified, although suitable settings are given for systems we have
access to. The installation script searches the $CUTER/build/arch directory for
files named compiler.* from which to choose a compiler. This does not imply
that the corresponding compilers are actually installed on the local system but
these files are meant to represent the most common compilers on that system.
The creation of a suitable compiler.* file, if none is available, is left to the user,
but can normally be achieved by modifying one “similar” to those provided.
These two sets of files should be checked before the installation procedure is ini-
tiated. During installation, the option to choose between small, medium, large
or custom “sizes” for CUTEr is provided. These sizes come pre-specified, but
may be tuned by editing the size.* files in the directory $CUTER/build/arch

and re-issuing the install command. The installation procedure works by casting
prototype files against the system, compiler, precision and size information cho-
sen by the user, casting the Fortran source files following the same pattern, and
linking and possibly compiling the result. Each installation is logged, both for

14 Nicholas I. M. Gould, Dominique Orban and Philippe L. Toint

information purposes and with subsequent un-installation possibilities in mind.
Un-installing an installed CUTEr is carried out by the script uninstall cuter,
which also updates the log file. The CUTEr tools, documentation, scripts, or
other may be updated by the script update cuter, as updates and bug fixes be-
come available. A fourth script called rebuild serves the purpose of rebuilding
or upgrading an installed version of CUTEr when the size parameters, compiler
flags or system commands need to be changed, possibly as the result of warning
or error messages issued by the SIF decoder or the CUTEr tools.

The second means of installing CUTEr is driven by portability concerns. The
user is prompted for information by the install cuter script, which creates the
appropriate directory structure but leaves the local installation to Imakefiles.
Imakefiles can be considered as Makefile generators, or “meta Makefiles” in that
they generate Makefiles suited to the local platform and architecture without
user intervention. Their use is fully documented within CUTEr and in [15]. This
option greatly eases the task of the user when it comes to modifying the size
of the CUTEr tools and rebuilding part of their instance of CUTEr as Makefiles

rebuild only what needs to be rebuilt. This option also makes the script rebuild
redundant. The Imakefiles needed to build a complete instance of CUTEr rely
on a set of configuration files stored under $MYCUTER/config, where the details
about the local architecture are contained. Should users need to modify local
parameters, they can do so by editing two files, namely Imake.tmpl and the con-
figuration file corresponding to their platform ; for instance sun.cf, linux.cf,
ibm.cf, etc. The Makefiles then need to be re-created and CUTEr needs to be
rebuilt using usual make commands.

The installation procedure for the SifDec package is identical, with the sole
proviso that in this context the names install script cuter, install cuter,
update cuter, uninstall cuter, CUTER and MYCUTER, in the above descrip-
tion should instead be interpreted as install script sifdec, install sifdec,
update sifdec, uninstall sifdec, SIFDEC, and MYSIFDEC respectively.

7. Obtaining CUTEr and SifDec

CUTEr and SifDec are written is standard ISO Fortran 77, but additionally
CUTEr provides some support for Fortran 90/95. Single and double precision
versions are available in a variety of sizes. Machine dependencies are carefully
isolated and easily adaptable, making installation on heterogeneous networks
possible. Automatic installation procedures are available for a variety of Unices,
including Linux. CUTEr and SifDec can be downloaded from their main web-
pages, at the locations

http://cuter.rl.ac.uk/cuter-www, and
http://cuter.rl.ac.uk/cuter-www/sifdec

respectively.

Information on updates and how to obtain both packages will be available
on the websites.

The CUTEr environment 15

8. Conclusion and perspectives

This paper described improvements and new features of CUTEr, the latest release
of the CUTE testing environment, and of SifDec, the isolated SIF decoder. The
purposes of CUTEr are to

– provide a way to explore an extensive collection of problems,
– provide a way to compare existing packages,
– provide a way to use a large test problem collection with new packages,
– provide motivation for building a meaningful set of new interesting test prob-

lems,
– provide ways to manage and update the system efficiently, and
– do all the above on a variety of popular platforms.

SifDec has been isolated and designed in order to

– supply a consistent interface to any package which may require the decoder,
such as CUTEr and the forthcoming LANCELOT-B,

– ease its maintenance, upgrading and ease the addition of new capabilities,
– provide access to automatic differentiation packages.

The environments are currently only available for unix platforms, but it
is possible to install both packages on shared-filesystem local networks, since
machine dependencies have been carefully isolated. A number of previously-
unsupported optimization and linear algebra packages are now interfaced by
CUTEr, and corresponding driver programs are supplied. New tools for both
constrained and unconstrained programming have been added. Some support
for automatic differentiation packages is now integrated into SifDec. Documen-
tation now appears in different forms, including the usual unix manual pages
describing the tools and interfaces, postscript and pdf general documentation
covering installation, maintenance and usage. Additional details will be pro-
vided on the dedicated websites. It is hoped that installing CUTEr and SifDec

on currently unsupported unix platforms, as well as writing interfaces for not-
yet supported optimization package, are relatively easy, as has been the case
with CUTE.

In the future, we plan to merge the different CUTEr tools so as to remove
their dependency on whether the input problem is constrained or not, and have a
single consistent set of tools. We also intend to use automatic memory allocation
to remove the dependency of both the SIF decoder and the CUTEr tools on
preselected sizes. An intuitive graphical user interface (GUI) is under way, to
ease the installation phase, to manage the different local installations of CUTEr

and SifDec, and to enable the user to work in a unified environment. As already
mentioned, the websites will keep up-to-date information about both packages
new features, bug fixes, new documentation and more.

Acknowledgements

Thanks to the following people for providing interfaces: Phil Gill for Snopt, Jorge
Nocedal and Richard Waltz for KNITRO, Sven Leyffer and Roger Fletcher for
filterSQP. We also wish to thank CUTE users for their comments, bug reports,
use, abuse and contributions.

16 Nicholas I. M. Gould, Dominique Orban and Philippe L. Toint

References

1. R. H. Bielschowsky and F. A. M. Gomes. Dynamical control of infeasibility in
nonlinearly constrained optimization. Presentation at the Optimization 98 Con-
ference, Coimbra, 1998.

2. I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint. CUTE: Constrained
and Unconstrained Testing Environment. ACM Transactions on Mathematical
Software, 21(1):123–160, 1995.

3. M. G. Breitfeld and D. F. Shanno. Preliminary computational experience with
modified log-barrier functions for large-scale nonlinear programming. In W. W.
Hager, D. W. Hearn, and P. M. Pardalos, editors, Large Scale Optimization: State
of the Art, pages 45–66, Dordrecht, The Netherlands, 1994. Kluwer Academic
Publishers.

4. M. G. Breitfeld and D. F. Shanno. Computational experience with penalty-barrier
methods for nonlinear programming. Annals of Operations Research, 62:439–463,
1996.

5. R. H. Byrd, J. Ch. Gilbert, and J. Nocedal. A trust region method based on
interior point techniques for nonlinear programming. Mathematical Programming,
89(1):149–185, 2000.

6. R. H. Byrd, J. Nocedal, and R. A. Waltz. Feasible interior methods using slacks
for nonlinear optimization. Technical Report 11, Optimization Technology Center,
Argonnne National Laboratory, Argonne, Illinois, USA, 2000.

7. T. F. Coleman and W. Yuan. A new trust region algorithm for equality constrained
optimization. Technical Report TR95-1477, Department of Computer Science,
Cornell University, Ithaca, New York, USA, 1995.

8. A. R. Conn, N. I. M. Gould, D. Orban, and Ph. L. Toint. A primal-dual trust-
region algorithm for non-convex nonlinear programming. Mathematical Program-
ming, 87(2):215–249, 2000.

9. A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT: a Fortran package for
Large-scale Nonlinear Optimization (Release A). Springer Series in Computational
Mathematics. Springer Verlag, Heidelberg, Berlin, New York, 1992.

10. A. R. Conn, N. I. M. Gould, and Ph. L. Toint. A primal-dual algorithm for mini-
mizing a nonconvex function subject to bound and linear equality constraints. In
G. Di Pillo and F. Giannessi, editors, Nonlinear Optimization and Related Topics,
pages 15–50, Dordrecht, The Netherlands, 1999. Kluwer Academic Publishers.

11. A. R. Conn, L. N. Vicente, and C. Visweswariah. Two-step algorithms for non-
linear optimization with structured applications. SIAM Journal on Optimization,
9(4):924–947, 1999.

12. J. E. Dennis, M. El-Alem, and K. A. Williamson. A trust-region approach to
nonlinear systems of equalities and inequalities. SIAM Journal on Optimization,
9(2):291–315, 1999.

13. M. A. Diniz-Ehrhardt, M. A. Gomes-Ruggiero, and S. A. Santos. Comparing
the numerical performance of two trust-region algorithms for large-scale bound-
constrained minimization. Revista Latino Americana de Investigación Operativa,
7:23–54, 1997.

14. M. A. Diniz-Ehrhardt, M. A. Gomes-Ruggiero, and S. A. Santos. Numerical analy-
sis of leaving-face parameters in bound-constrained quadratic minimization. Tech-
nical Report 52/98, Department of Applied Mathematics, IMECC-UNICAMP,
Campinas, Brasil, 1998.

15. P. Dubois. Software Portability with imake. O’Reilly & Associates, Inc, 1993.

The CUTEr environment 17

16. I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Oxford University Press, Oxford, England, 1986.

17. I. S. Duff, R. G. Grimes, and J. G. Lewis. Sparse matrix test problems. ACM
Transactions on Mathematical Software, 15(1):1–14, 1989.

18. I. S. Duff, R. G. Grimes, and J. G. Lewis. Users’ guide for the Harwell-Boeing
sparse matrix collection (Release 1). Technical Report RAL-92-086, Rutherford
Appleton Laboratory, Chilton, Oxfordshire, England, 1992.

19. I. S. Duff, R. G. Grimes, and J. G. Lewis. The Rutherford-Boeing sparse matrix
collection. Technical Report RAL-TR-97-031, Rutherford Appleton Laboratory,
Chilton, Oxfordshire, England, 1997.

20. R. Fletcher, N. I. M. Gould, S. Leyffer, and Ph. L. Toint. Global convergence of
trust-region SQP-filter algorithms for nonlinear programming. Technical Report
99/03, Department of Mathematics, University of Namur, Namur, Belgium, 1999.

21. R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function.
Mathematical Programming, 91(2):239–269, 2002.

22. R. Fletcher and S. Leyffer. User manual for filterSQP. Numerical Analysis Report
NA/181, Department of Mathematics, University of Dundee, Dundee, Scotland,
1998.

23. E. M. Gertz. Combination Trust-Region Line-Search Methods for Unconstrained
Optimization. PhD thesis, Department of Mathematics, University of California,
San Diego, California, USA, 1999.

24. P. E. Gill, W. Murray, and M. A. Saunders. User’s guide for SNOPT 5.3: a Fortran
package for large-scale nonlinear programming, 1998.

25. F. A. M. Gomes, M. C. Maciel, and J. M. Mart́ınez. Nonlinear programming
algorithms using trust regions and augmented Lagrangians with nonmonotone
penalty parameters. Mathematical Programming, 84(1):161–200, 1999.

26. N. I. M. Gould, S. Lucidi, M. Roma, and Ph. L. Toint. Solving the trust-region
subproblem using the Lanczos method. SIAM Journal on Optimization, 9(2):504–
525, 1999.

27. N. I. M. Gould and J. Nocedal. The modified absolute-value factorization norm
for trust-region minimization. In R. De Leone, A. Murli, P. M. Pardalos, and
G. Toraldo, editors, High Performance Algorithms and Software in Nonlinear Op-
timization, pages 225–241, Dordrecht, The Netherlands, 1998. Kluwer Academic
Publishers.

28. N. I. M. Gould, D. Orban, and Ph. L. Toint. GALAHAD—a library of thread-
safe fortran 90 packages for large-scale nonlinear optimization. Technical Report
(in preparation), Rutherford Appleton Laboratory, Chilton, Oxfordshire, England,
2002.

29. HSL. A collection of Fortran codes for large scale scientific computation, 2002.

30. IBM Optimization Solutions and Library. QP Solutions User Guide. IBM Cor-
portation, 1998.

31. M. Lalee, J. Nocedal, and T. D. Plantenga. On the implementation of an algorithm
for large-scale equality constrained optimization. SIAM Journal on Optimization,
8(3):682–706, 1998.

32. M. Marazzi and J. Nocedal. Wedge trust region methods for derivative free op-
timization. Technical Report 2000/10, Optimization Technology Center, North-
western University, Evanston, Illinois, USA, 2000.

33. I. Maros and C. Meszaros. A repository of convex quadratic programming prob-
lems. Optimization Methods and Software, 11-12:671–681, 1999.

18 Nicholas I. M. Gould, Dominique Orban and Philippe L. Toint

34. D. B. Ponceleón. Barrier methods for large-scale quadratic programming. PhD
thesis, Department of Computer Science, Stanford University, Stanford, California,
USA, 1990.

35. J. D. Pryce and J. K. Reid. AD01, a Fortran 90 codes automatic differentiation.
Technical Report RAL-TR-1998-057, Rutherford Appleton Laboratory, Chilton,
Oxfordshire, England, 1998.

36. R. W. H. Sargent and X. Zhang. An interior-point algorithm for solving general
variational inequalities and nonlinear programs. Presentation at the Optimization
98 Conference, Coimbra, 1998.

37. A. Sartenaer. Automatic determination of an initial trust region in nonlinear
programming. SIAM Journal on Scientific Computing, 18(6):1788–1803, 1997.

38. J. S. Shahabuddin. Structured trust-region algorithms for the minimization of non-
linear functions. PhD thesis, Department of Computer Science, Cornell University,
Ithaca, New York, USA, 1996.

39. S. Ulbrich and M. Ulbrich. Nonmonotone trust region methods for nonlinear
equality constrained optimization without a penalty function. Presentation at the
First Workshop on Nonlinear Optimization “Interior-Point and Filter Methods”,
Coimbra, Portugal, 1999.

40. Y. Xiao. Non-monotone algorithms in optimization and their applications. PhD
thesis, Monash University, Clayton, Australia, 1996.

41. Y. Xiao and E. K. W. Chu. Nonmonotone trust region methods. Technical Report
95/17, Monash University, Clayton, Australia, 1995.

42. H. Yamashita, H. Yabe, and T. Tanabe. A globally and superlineraly convergent
primal-dual point trust region method for large scale constrained optimization.
Technical report, Mathematical Systems, Inc., Sinjuku-ku, Tokyo, Japan, 1997.

43. C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm 778. L-BFGS-B: Fortran
subroutines for large-scale bound constrained optimization. ACM Transactions
on Mathematical Software, 23(4):550–560, 1997.

A. Calling sequences for the new evaluation tools

Here we give the complete argument lists for those subroutines summarized
in Tables 3.1 and 3.2 that are new to CUTEr; the remaining subroutines were
fully documented in the appendix to [2]. There are two sets of tools: one set
for unconstrained and bound constrained problems, and one set for generally
constrained problems. Note that these two sets of tools cannot be mixed.

The superscript i on an argument means that the argument must be set on
input. A superscript o means that the argument is set by the subroutine.

A.1. Unconstrained and bound constrained problems

– Discover how many variables are involved in the problem:
CALL UDIMEN (INPUTi, No)

– Determine how many nonzeros are required to store the Hessian matrix of
the objective function (when stored in a sparse format):
CALL UDIMSH (NNZHo)

– Determine how many nonzeros are required to store the Hessian matrix of the
objective function (when stored as a sparse matrix in finite-element format):
CALL UDIMSE(NEo, NZHo, NZIRNHo)

The CUTEr environment 19

– Obtain the type of each variable:
CALL UVARTY(Ni, IVARTYo)

– Obtain statistics concerning function evaluation and CPU time use:
CALL UREPRT (UCALLSo, TIMEo)

A.2. Generally constrained problems

– Discover how many variables and constraints are involved in the problem:
CALL CDIMEN (INPUTi, No, Mo)

– Determine how many nonzeros are required to store the matrix of gradients
of the objective function and constraints (when stored in a sparse format):
CALL CDIMSJ (NNZJo)

– Determine how many nonzeros are required to store the Hessian matrix of
the Lagrangian (when stored in a sparse format):
CALL CDIMSH (NNZHo)

– Determine how many nonzeros are required to store the Hessian matrix of
the Lagrangian (when stored as a sparse matrix in finite-element format):
CALL CDIMSE(NEo, NZHo, NZIRNHo)

– Obtain the type of each variable:
CALL CVARTY(Ni, IVARTYo)

– Evaluate an individual constraint function and possibly its gradient (when
this is stored in a sparse format):
CALL CCIFSG (Ni, Ii, Xi,CIo, NNZSGCo, LSGCIi,SGCIo, IVSGCIo, GRADi)

– Obtain statistics concerning function evaluation and CPU time use:
CALL CREPRT (CCALLSo, TIMEo)

A.3. Argument descriptions

The arguments in the above calling sequences have the following meanings:

CCALLS is an array whose components give counts for various activities during
the current execution of the constrained tools. Components are:

CCALLS(1) number of objective function evaluations
CCALLS(2) number of objective gradient evaluations
CCALLS(3) number of objective Hessian evaluations
CCALLS(4) number of Hessian-vector products
CCALLS(5) number of constraint evaluations
CCALLS(6) number of constraint Jacobian evaluations
CCALLS(7) number of constraint Hessian evaluations
CI is the value of the general constraint function I evaluated at X.
GRAD is a logical variable which should be set .TRUE. if the gradient of the

constraint function is required from CCIFSG. Otherwise, it should be
set .FALSE.

I is the index of the general constraint function to be evaluated by
CCIFSG.

INPUT is the unit number for the decoded data, i.e., from which OUTSDIF.d

(see [2]) is read.
IVARTY is an array whose i-th component indicates the type of variable i.

Possible values are 0 (a variable whose value may be any real number),

20 The CUTEr environment

1 (an integer variable that can only take the values zero or one) and
2 (a variable that can only take integer values).

IVSGCI is an array whose i-th component is the index of the variable with
respect to which SGCI(i) is the derivative.

LSGCI is the actual declared dimension of SGCI.
M is the total number of general constraints.
N is the number of variables for the problem.
NE is the number of elements in a finite-element representation of the

Hessian for the problem.
NZH is the dimension of the array needed to store the real values of the

finite-element Hessian for the problem.
NZIRNH is the dimension of the array needed to store the integer values of

the finite-element Hessian for the problem.
NNZH is the number of nonzeros in the Hessian for the problem.
NNZJ is the number of nonzeros in the constraint Jacobian for the problem.
NNZSGC is the number of nonzeros in SGCI.
SGCI is an array which gives the values of the nonzeros of the gradient of the

general constraint function I evaluated at X. The i-th entry of SGCI
gives the value of the derivative with respect to variable IVSGCI(i) of
function I.

TIME is an array whose components give CPU times (in seconds) for various
activities during the current execution of the tools. Components are:

TIME(1) CPU time for call to USETUP/CSETUP.

TIME(2) CPU time since last call to USETUP/CSETUP.

UCALLS is an array whose components give counts for various activities during
the current execution of the unconstrained tools. Components are:

UCALLS(1) number of objective function evaluations
UCALLS(2) number of objective gradient evaluations
UCALLS(3) number of objective Hessian evaluations
UCALLS(4) number of Hessian-vector products
X is an array which gives the current estimate of the solution of the

problem.

	Introduction
	A new flexible organization
	New tools
	New interfaces
	An isolated PD1OT1cmrcmrmmnnSIF decoder
	A new design
	Extensions of the PD1OT1cmrcmrmmnnSIF
	Quadratic programs
	User-changeable parameters

	The new installation procedures
	Obtaining PD1OT1cmrcmrmmnnCUTEr and PD1OT1cmrcmrmmnnSifDec
	Conclusion and perspectives
	 Calling sequences for the new evaluation tools
	Unconstrained and bound constrained problems
	Generally constrained problems
	Argument descriptions

